【大模型手撕】pytorch实现LayerNorm, RMSNorm

LayerNorm介绍请参考:【AI知识】归一化、批量归一化 、 层归一化 和 实例归一化

RMSNorm介绍请参考:【大模型知识点】RMSNorm(Root Mean Square Normalization)均方根归一化

LayerNorm实现:

python 复制代码
import torch 
import torch.nn as nn


class LayerNorm(nn.Module):
    def __init__(self,dim,eps=1e-5,bias=False):
        super().__init__()
        self.dim = dim
        self.eps = eps
        # 可训练的缩放参数
        self.gamma = nn.Parameter(torch.ones(dim))

        self.bias = nn.Parameter(torch.zeros(dim)) if bias else None
    
    def forward(self,x):
        # x: (batch_size,seq_len,dim)
        # 计算均值 x_mean : (batch_size,seq_len,dim)
        x_mean = x.mean(-1,keepdim=True)
        # 计算均方根 rms :  (batch_size,seq_len,dim)
        rms = torch.sqrt(x.pow(2).mean(-1,keepdim=True)+self.eps)

        if self.bias:
            return self.gamma*((x-x_mean)/rms)+self.bias
        else:
            return self.gamma*((x-x_mean)/rms)

RMSNorm实现:

python 复制代码
import torch 
import torch.nn as nn

class RMSNorm(nn.Module):
    def __init__(self,dim,eps=1e-5,bias=False):
   		super().__init__()
        self.dim = dim 
        self.eps = eps
        # 可训练的缩放参数
        self.gamma = nn.Parameter(torch.ones(dim))
        self.bias = nn.Parameter(torch.zeros(dim)) if bias else None
    def forward(self,x):
        # 计算输入的均方根
        # x: (batch_size,seq_len,dim)
        # .mean(-1,keepdim=True) : 在最后一个维度(特征维度)上计算平均值,并保持维度不变
        # rms : (batch_size,seq_len,1)
        rms = torch.sqrt(x.pow(2).mean(-1,keepdim=True)+self.eps)

        if self.bias:
            return self.gamma*(x/rms) + self.bias
        else:
            return self.gamma*(x/rms)
相关推荐
Mark_Aussie3 小时前
ADALog 日志异常检测
人工智能
Jouham3 小时前
教培获客破局:AI智能体如何重塑需求捕捉与转化新范式
人工智能
HyperAI超神经3 小时前
IQuest-Coder-V1:基于代码流训练的编程逻辑增强模型;Human Face Emotions:基于多标注维度的人脸情绪识别数据集
人工智能·深度学习·学习·机器学习·ai编程
开发者每周简报3 小时前
MCP + 氛围编辑
人工智能
啊阿狸不会拉杆3 小时前
《机器学习》第 1 章 - 机器学习概述
人工智能·机器学习·ai·ml
52Hz1183 小时前
力扣73.矩阵置零、54.螺旋矩阵、48.旋转图像
python·算法·leetcode·矩阵
咚咚王者3 小时前
人工智能之核心基础 机器学习 第十八章 经典实战项目
人工智能·机器学习
DuHz4 小时前
矩阵束法(Matrix Pencil)用于 FMCW 雷达干扰抑制:论文精读
人工智能·机器学习·矩阵
编程小风筝4 小时前
机器学习和稀疏建模的应用场景和优势
人工智能·机器学习
Kakaxiii4 小时前
【2025.8 npj】图检索增强的大型语言模型用于面部表型相关的罕见遗传疾病
人工智能·语言模型·自然语言处理