Python深度学习:NumPy数组库


文章目录


NumPy 数组核心概念与操作指南

一、NumPy 数组概述

1.1 与传统列表的比较

  • Python 列表缺点:可以存储不同数据类型,需要额外空间存储类型信息,导致内存冗余
  • NumPy 数组优势:要求所有元素类型一致,节省内存空间,提高计算效率

1.2 数组类型系统

  • 整数型数组:所有元素均为整数时创建
  • 浮点型数组:包含任意浮点数时自动升级为浮点型
  • 类型同化原则:数组中所有元素会自动转换为最高精度的数据类型

二、数组创建与基本操作

2.1 创建数组

python 复制代码
import numpy as np

# 将列表转换为数组
arr = np.array([1, 2, 3])  # 创建整数型数组
arr_float = np.array([1, 2.5, 3])  # 创建浮点型数组

# 使用专用函数创建数组
ones_arr = np.ones(5)  # 创建全1数组
zeros_arr = np.zeros((2, 3))  # 创建全0二维数组

2.2 数组维度理解

  • 一维数组:向量(单层中括号)
  • 二维数组:矩阵(双层中括号)
  • 高维数组:张量(多层中括号)

三、数组索引与切片

3.1 基本索引

python 复制代码
arr = np.array([[1, 2, 3, 4],
                [5, 6, 7, 8],
                [9, 10, 11, 12]])

# 普通索引(单层中括号)
print(arr[0, 1])  # 输出: 2

# 花式索引(双层中括号)
print(arr[[0, 2], [1, 3]])  # 输出: [2, 12]

3.2 切片操作

python 复制代码
# 矩阵切片(半开区间)
print(arr[1:3, 1:-1])  # 行1-2,列1-2(不含最后一列)

# 跳跃采样
print(arr[::2, ::3])  # 每隔2行、每隔3列采样

3.3 提取矩阵的行/列

python 复制代码
# 提取行并转换为列向量
row = arr[1, :]  # 提取第1行(一维数组)
col_matrix = row.reshape(-1, 1)  # 转换为列向量(二维数组)

3.4 切片的重要特性

  • 数组切片是视图而非副本,修改切片会影响原数组
  • 内存优化技巧:使用 arr[:] = <表达式> 替代 arr = <表达式> 可节省内存

四、数组变形与操作

4.1 重塑数组形状

python 复制代码
# 使用reshape方法改变数组维度
vector = np.arange(1, 4)  # 一维数组: [1, 2, 3]
matrix = vector.reshape(1, 3)  # 二维数组: [[1, 2, 3]]

4.2 数组拼接注意事项

  • 不同维度的数组不能直接拼接(如向量与矩阵)
  • 必须先统一维度再进行拼接操作

4.3 数组分裂

python 复制代码
# 使用split进行数组截断
arr = np.arange(10)
result = np.split(arr, [3, 7])  # 在索引3和7处分割数组

五、数组运算与广播机制

5.1 基本运算

  • 乘法默认执行"逐元素相乘"(Hadamard积),而非矩阵乘法

5.2 广播规则

不同形状数组间运算的自动适配机制:

  1. 向量与矩阵运算:向量自动升级为行矩阵
  2. 特殊形状广播
    • 行矩阵自动广播适配更高维数组
    • 列矩阵自动广播适配更高维数组

六、线性代数与特殊函数

6.1 矩阵乘积

python 复制代码
# 向量与向量的点积
v1 = np.array([1, 2, 3])
v2 = np.array([4, 5, 6])
dot_product = np.dot(v1, v2)  # 点积运算

# 矩阵乘法
matrix1 = np.array([[1, 2], [3, 4]])
matrix2 = np.array([[5, 6], [7, 8]])
mat_product = np.matmul(matrix1, matrix2)  # 矩阵乘法

6.2 常用线性代数函数

  • np.linalg.inv(): 矩阵求逆
  • np.linalg.det(): 矩阵行列式
  • np.linalg.eig(): 特征值与特征向量计算

提示:在实际应用中,理解这些核心概念对于高效使用NumPy进行科学计算和数据分析至关重要。广播机制和视图概念是NumPy最强大但也最容易误解的特性,需要特别注意。

总结

如果我的内容对你有帮助,请点赞👍、关注❤、收藏⭐️。创作不易,大家的支持就是我坚持下去的动力!

相关推荐
yongche_shi2 小时前
第二篇:Python“装包”与“拆包”的艺术:可迭代对象、迭代器、生成器
开发语言·python·面试·面试宝典·生成器·拆包·装包
深度学习lover2 小时前
<数据集>yolo梨幼果识别数据集<目标检测>
python·yolo·目标检测·计算机视觉·数据集
CoovallyAIHub2 小时前
CostFilter-AD:用“匹配代价过滤”刷新工业质检异常检测新高度! (附论文和源码)
深度学习·算法·计算机视觉
CoovallyAIHub3 小时前
CVPR 2025 | 频率动态卷积(FDConv):以固定参数预算实现频率域自适应,显著提升视觉任务性能
深度学习·算法·计算机视觉
刀客1233 小时前
测试之道:从新手到专家实战(四)
python·功能测试·程序人生·测试用例·集成测试·学习方法·安全性测试
mit6.8243 小时前
[rStar] 解决方案节点 | `BaseNode` | `MCTSNode`
人工智能·python·算法
这里有鱼汤3 小时前
低价股的春天来了?花姐用Python带你扒一扒
后端·python
Elastic 中国社区官方博客3 小时前
介绍 Python Elasticsearch Client 的 ES|QL 查询构建器
大数据·开发语言·数据库·python·elasticsearch·搜索引擎·全文检索
独行soc3 小时前
2025年渗透测试面试题总结-60(题目+回答)
java·python·安全·web安全·adb·面试·渗透测试