YOLOv8 mac-intel芯片 部署指南

🚀 在 Jupyter Notebook 和 PyCharm 中使用 Conda 虚拟环境(YOLOv8 部署指南,Python 3.9)

YOLOv8 是 Ultralytics 开源的最新目标检测模型,轻量高效,支持分类、检测、分割等多种任务。

在 Mac(Intel 芯片)上部署 YOLOv8,我们推荐用 conda 虚拟环境(Python 3.9) 来管理依赖,并在 Jupyter / PyCharm 中使用。

这篇文章带你完整走一遍:

👉 环境安装 → 模型手动下载 → Jupyter 配置 → PyCharm 配置 → 验证运行。


🐍 一、创建 Conda 虚拟环境并安装 YOLOv8

  1. 创建环境(指定 Python 3.9)

    conda create -n yolov8 python=3.9 -y
    conda activate yolov8

  2. 安装依赖

    pip install torch torchvision torchaudio
    pip install ultralytics
    pip install jupyter ipykernel

⚠️ 说明:

YOLOv8 默认会从 GitHub 下载模型文件(如 yolov8n.pt),但国内经常超时。推荐 手动下载模型文件 并放在本地。


📥 二、手动下载 YOLOv8 模型和测试图片

  1. 模型文件下载地址(Ultralytics 官方)

下载后放到本地路径,例如:

复制代码
/Users/marks/work/yolo/models/yolov8n.pt
  1. 测试图片下载

    例如官方示例图片:

保存到:

复制代码
/Users/marks/work/yolo/images/bus.jpg

📓 三、在 Jupyter Notebook 中使用 yolov8 环境

  1. 把环境注册为 Jupyter 内核:

    python -m ipykernel install --user --name yolov8 --display-name "Python (yolov8)"

  2. 启动 Jupyter:

    jupyter notebook

  3. 新建 Notebook → 选择内核 Python (yolov8)

  4. 测试 YOLOv8 运行:

    from ultralytics import YOLO

    加载本地模型

    model = YOLO("/Users/marks/work/yolo/models/yolov8n.pt")

    测试推理

    results = model("/Users/marks/work/yolo/images/bus.jpg")
    results.show() # 显示预测结果


💻 四、在 PyCharm 中使用 yolov8 环境

  1. 打开 Preferences → Project: your_project → Python Interpreter

  2. 选择 Add... → Conda Environment → Existing environment

  3. 指定解释器路径,例如:

    /Users/marks/anaconda3/envs/yolov8/bin/python

  4. 点击确认,PyCharm 就会用 yolov8 环境。


✅ 五、验证环境是否正常

无论在 Jupyter 还是 PyCharm,运行以下代码验证环境:

复制代码
import torch
print("PyTorch 版本:", torch.__version__)
print("CUDA 是否可用:", torch.cuda.is_available())

from ultralytics import YOLO
model = YOLO("/Users/marks/work/yolo/models/yolov8n.pt")
print("YOLOv8 模型加载成功 ✅")

如果能正确输出,就说明部署成功啦 🚀


🖼️ 六、YOLOv8 模型测试(本地模型 + 图片)

当环境配置完成后,我们可以用 本地模型文件测试图片 来验证 YOLOv8 是否正常运行。


1. 命令行验证(推荐快速测试)

复制代码
# === 验证安装 (使用本地模型和图片) =================
MODEL_PATH="/Users/emilie/work/yolo/models/yolov8n.pt"
IMAGE_PATH="/Users/emilie/work/yolo/images/bus.jpg"

echo ">>> 使用本地权重和图片验证 YOLOv8 安装是否成功"
yolo predict model=$MODEL_PATH source=$IMAGE_PATH

echo ">>> 如果在 runs/predict 下看到 bus.jpg 检测结果,说明环境安装成功!"

运行后,YOLOv8 会自动在 runs/predict/ 下生成预测结果图片,打开即可看到目标检测效果 ✅


2. Python 代码验证(适合二次开发)

复制代码
from ultralytics import YOLO

# 加载本地模型(手动下载的 yolov8n.pt)
model = YOLO("/Users/marks/work/yolo/models/yolov8n.pt")

# 使用本地图片进行推理
results = model("/Users/marks/work/yolo/images/bus.jpg")

# 显示预测结果
results.show()

# 保存预测结果到指定目录
results.save("/Users/marks/work/yolo/results/")

模型输出图片结果:


❓ 七、常见问题(FAQ)

Q1: YOLOv8 模型下载失败怎么办?

A:

  • 直接去 Ultralytics 官方 Release 手动下载 .pt 文件;

  • 把模型放到本地路径,例如:

    复制代码
    /Users/marks/work/yolo/models/yolov8n.pt
  • 在代码里手动加载:

    复制代码
    model = YOLO("/Users/marks/work/yolo/models/yolov8n.pt")

Q2: CUDA 是否可用?如何在 CPU 上运行?

A:

  • Mac Intel 芯片 没有 CUDA 支持,只能用 CPU 推理。

  • 可以通过以下代码检查:

    复制代码
    import torch
    print(torch.cuda.is_available())  # 输出 False 表示 CPU 模式
  • 如果需要 GPU 加速,可以考虑换到支持 CUDA 的 Linux/Windows + NVIDIA GPU 环境。


Q3: PyCharm 里没有找到 yolov8 环境怎么办?

A:

  • 打开 Preferences → Project → Python Interpreter → Add...

  • 选择 Conda Environment → Existing environment

  • 浏览到路径:

    复制代码
    /Users/marks/anaconda3/envs/yolov8/bin/python
  • 保存即可。


Q4: Jupyter Notebook 内核没有 yolov8 怎么办?

A:

  • 确保已经执行过:

    复制代码
    python -m ipykernel install --user --name yolov8 --display-name "Python (yolov8)"
  • 重新启动 Jupyter:

    复制代码
    jupyter notebook
  • 在 Notebook 界面 Kernel → Change Kernel 选择 "Python (yolov8)"。


Q5: 环境太大了,能不能只安装最小依赖?

A:

可以只装必要依赖(CPU 版本):

复制代码
pip install torch ultralytics jupyter

这样体积更小,适合轻量测试。


相关推荐
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
工程师老罗8 小时前
YOLOv1 核心结构解析
yolo
Lun3866buzha9 小时前
YOLOv10-BiFPN融合:危险物体检测与识别的革新方案,从模型架构到实战部署全解析
yolo
Katecat996639 小时前
YOLOv8-MambaOut在电子元器件缺陷检测中的应用与实践_1
yolo
工程师老罗10 小时前
YOLOv1 核心知识点笔记
笔记·yolo
工程师老罗15 小时前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
学习3人组18 小时前
YOLO模型集成到Label Studio的MODEL服务
yolo
孤狼warrior19 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
水中加点糖21 小时前
小白都能看懂的——车牌检测与识别(最新版YOLO26快速入门)
人工智能·yolo·目标检测·计算机视觉·ai·车牌识别·lprnet
前端摸鱼匠1 天前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测