字节开源 OneReward: 通过多任务人类偏好学习实现统一掩模引导的图像生成

简介

我们提出OneReward ------一种基于Qwen2.5-VL生成式奖励模型的全新视觉领域RLHF方法,通过增强多任务强化学习显著提升策略模型在多项子任务中的生成能力。基于OneReward,我们开发出Seedream 3.0 Fill 统一图像编辑模型,能高效处理图像填充、延展、物体消除和文字渲染等多样化任务,其表现超越Ideogram、Adobe Photoshop和FLUX Fill [Pro]等多家顶尖商业与开源系统。最后,基于FLUX Fill [dev]版本,我们激动地发布FLUX.1-Fill-dev-OneReward,该模型在修补与扩展绘画任务上性能优于闭源的FLUX Fill [Pro],为未来统一图像编辑研究树立了强大的新基准。

Image Fill
Image Extend with Prompt
Image Extend without Prompt
Object Removal

快速开始

  1. 确保您的transformers版本≥4.51.3(支持Qwen2.5-VL)

  2. 安装最新版本的diffusers

bash 复制代码
pip install -U diffusers

以下内容包含一段代码示例,展示如何基于文本提示和输入遮罩使用模型生成图像,支持图像修复(inpaint)、图像扩展(outpaint)和对象擦除(object-removal)。由于模型已完全训练,需要使用带cfg的FluxFillCFGPipeline,您可以在我们的GitHub上找到相关代码。

python 复制代码
import torch
from diffusers.utils import load_image
from diffusers import FluxTransformer2DModel

from src.pipeline_flux_fill_with_cfg import FluxFillCFGPipeline

transformer_onereward = FluxTransformer2DModel.from_pretrained(
    "bytedance-research/OneReward",
    subfolder="flux.1-fill-dev-OneReward-transformer",
    torch_dtype=torch.bfloat16
)

pipe = FluxFillCFGPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Fill-dev", 
    transformer=transformer_onereward,
    torch_dtype=torch.bfloat16).to("cuda")

# Image Fill
image = load_image('assets/image.png')
mask = load_image('assets/mask_fill.png')
image = pipe(
    prompt='the words "ByteDance", and in the next line "OneReward"',
    negative_prompt="nsfw",
    image=image,
    mask_image=mask,
    height=image.height,
    width=image.width,
    guidance_scale=1.0,
    true_cfg=4.0,
    num_inference_steps=50,
    generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"image_fill.jpg")
模型

FLUX.1-Fill-dev[OneReward],采用论文中算法1训练

python 复制代码
transformer_onereward = FluxTransformer2DModel.from_pretrained(
    "bytedance-research/OneReward",
    subfolder="flux.1-fill-dev-OneReward-transformer",
    torch_dtype=torch.bfloat16
)

pipe = FluxFillCFGPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Fill-dev", 
    transformer=transformer_onereward,
    torch_dtype=torch.bfloat16).to("cuda")

FLUX.1-Fill-dev[OneRewardDynamic],采用论文中的算法2进行训练

python 复制代码
transformer_onereward_dynamic = FluxTransformer2DModel.from_pretrained(
    "bytedance-research/OneReward",
    subfolder="flux.1-fill-dev-OneRewardDynamic-transformer",
    torch_dtype=torch.bfloat16
)

pipe = FluxFillCFGPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Fill-dev", 
    transformer=transformer_onereward_dynamic,
    torch_dtype=torch.bfloat16).to("cuda")
Object Removal
python 复制代码
image = load_image('assets/image.png')
mask = load_image('assets/mask_remove.png')
image = pipe(
    prompt='remove',  # using fix prompt in object removal
    negative_prompt="nsfw",
    image=image,
    mask_image=mask,
    height=image.height,
    width=image.width,
    guidance_scale=1.0,
    true_cfg=4.0,
    num_inference_steps=50,
    generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"object_removal.jpg")
Image Extend with prompt
python 复制代码
image = load_image('assets/image2.png')
mask = load_image('assets/mask_extend.png')
image = pipe(
    prompt='Deep in the forest, surronded by colorful flowers',
    negative_prompt="nsfw",
    image=image,
    mask_image=mask,
    height=image.height,
    width=image.width,
    guidance_scale=1.0,
    true_cfg=4.0,
    num_inference_steps=50,
    generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"image_extend_w_prompt.jpg")

许可协议

代码采用 Apache 2.0 许可。模型采用 CC BY NC 4.0 许可。

相关推荐
黎宇幻生3 小时前
Java全栈学习笔记33
java·笔记·学习
2501_926227944 小时前
.Net程序员就业现状以及学习路线图(五)
学习·.net
siy23337 小时前
[c语言日记] 数组的一种死法和两种用法
c语言·开发语言·笔记·学习·链表
阿杜杜不是阿木木8 小时前
开始 ComfyUI 的 AI 绘图之旅-Stable Diffusion图生图之局部重绘(Inpaint)和扩图(Outpaint)(三)
人工智能·ai·ai作画·aigc·图生图
阿杜杜不是阿木木8 小时前
开始 ComfyUI 的 AI 绘图之旅-Stable Diffusion图生图(二)
人工智能·ai·ai作画·aigc·图生图
九章云极AladdinEdu8 小时前
存算一体芯片生态评估:从三星PIM到知存科技WTM2101
人工智能·pytorch·科技·架构·开源·gpu算力
在路上`9 小时前
前端学习之后端java小白(三)-sql外键约束一对多
java·前端·学习
尚久龙10 小时前
安卓学习 之 用户登录界面的简单实现
android·运维·服务器·学习·手机·android studio·安卓
yb0os110 小时前
RPC实战和核心原理学习(一)----基础
java·开发语言·网络·数据结构·学习·计算机·rpc