一些常用的激活函数及绘图

深度网络的一些常用激活函数,并通过matplot绘制出来:

python 复制代码
import matplotlib.pyplot as plt
import numpy as np


def relu(x):
    return np.maximum(0, x)


def leaky_relu(x, alpha=0.01):
    return np.where(x > 0, x, alpha * x)


def gelu(x):
    return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x ** 3)))


def swish(x):
    return x / (1 + np.exp(-x))


def sigmoid(x):
    return 1 / (1 + np.exp(-x))


def sigmoid_diff(x):
    return np.exp(-x) / ((1 + np.exp(-x)) ** 2)


def plot_func():
    x = np.linspace(-10, 10, 500)

    plt.figure(figsize=(6, 4))
    plt.plot(x, gelu(x), label='gelu')
    plt.plot(x, relu(x), label='relu')
    plt.plot(x, leaky_relu(x), label='leaky_relu', linestyle='--')

    plt.plot(x, sigmoid(x), label='sigmoid')
    plt.plot(x, swish(x), label='swish')
    plt.plot(x, sigmoid_diff(x), label='sigmoid_diff')

    plt.plot(x, np.tanh(x), label='tanh', linestyle='--')
    plt.axhline(0, color='k', linewidth=0.5)
    plt.axvline(0, color='k', linewidth=0.5)
    plt.title('all trigger functions')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.grid(True)
    plt.legend()
    plt.show()


plot_func()

sigmoid和tanh的缺点是梯度饱和(梯度易消失)。relu则改进了这一点(正半区梯度为1),且很容易计算。leaky_relu和gelu则解决了relu负半区梯度消失的问题,它俩在负半区仍有微小梯度,确保训练可进行下去。gelu还解决了relu函数在原点处的硬转折,使得梯度更平滑,避免震荡,训练更稳定。

相关推荐
aaaa_a13343 分钟前
The lllustrated Transformer——阅读笔记
人工智能·深度学习·transformer
海边夕阳20062 小时前
【每天一个AI小知识】:什么是大语言模型(LLM)?
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·llm
有Li2 小时前
医用图像配准中从基于模型到学习正则化的综合综述|文献速递-文献分享
论文阅读·深度学习·文献
listhi5203 小时前
使用Hopfield神经网络解决旅行商问题
人工智能·深度学习·神经网络
m0_564876843 小时前
卷积学习录
深度学习·学习·cnn
哥布林学者4 小时前
吴恩达深度学习课程四:计算机视觉 第一周:卷积基础知识 课后习题和代码代码实践
深度学习·ai
【建模先锋】4 小时前
精品数据分享 | 锂电池数据集(七)同济大学电池数据集
深度学习·锂电池剩余寿命预测·锂电池数据集·寿命预测·数据集分享
_codemonster5 小时前
AI大模型入门到实战系列(五)上下文嵌入向量(contextualized embedding)
人工智能·深度学习·embedding
一碗白开水一6 小时前
【论文阅读】Denoising Diffusion Probabilistic Models (DDPM)详细解析及公式推导
论文阅读·人工智能·深度学习·算法·机器学习
CoovallyAIHub6 小时前
AI模型训练有哪些关键步骤与必备工具?从概念到可运行的智能模型
深度学习·算法·计算机视觉