最小曲面问题的欧拉-拉格朗日方程 / 曲面极值问题的变分法推导

题目

问题 4. 曲面的面积为

S=∬D1+ux2+uy2dxdyS = \iint_{D} \sqrt{1 + u_x^2 + u_y^2} dxdyS=∬D1+ux2+uy2 dxdy (5)

其中 z=u(x,y) z = u(x, y) z=u(x,y), (x,y)∈D(x, y) \in D (x,y)∈D 是曲面的方程。

(a) 写出最小面积曲面的欧拉-拉格朗日偏微分方程(边界条件为 u(x,y)=ϕ(x,y) u(x, y) = \phi(x, y) u(x,y)=ϕ(x,y) 当 (x,y)∈Γ(x, y) \in \Gamma (x,y)∈Γ,其中 Γ\GammaΓ 是 D D D 的边界)。

(b) 如果势能为

E=kS−∬DfudxdyE = kS - \iint_{D} f u dxdyE=kS−∬Dfudxdy (6)

其中 S S S 由 (5) 定义,f f f 是外力的面密度。写出最小能量曲面的欧拉-拉格朗日偏微分方程。

解题过程

部分 (a)

我们需要最小化曲面面积泛函:
I[u]=∬D1+ux2+uy2dxdy I[u] = \iint_{D} \sqrt{1 + u_x^2 + u_y^2} dxdy I[u]=∬D1+ux2+uy2 dxdy

定义被积函数 F=1+ux2+uy2 F = \sqrt{1 + u_x^2 + u_y^2} F=1+ux2+uy2 。由于 F F F 不显式依赖于 u u u,即 ∂F∂u=0 \frac{\partial F}{\partial u} = 0 ∂u∂F=0,欧拉-拉格朗日方程为:
∂F∂u−∂∂x(∂F∂ux)−∂∂y(∂F∂uy)=0 \frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \left( \frac{\partial F}{\partial u_x} \right) - \frac{\partial}{\partial y} \left( \frac{\partial F}{\partial u_y} \right) = 0 ∂u∂F−∂x∂(∂ux∂F)−∂y∂(∂uy∂F)=0

计算偏导数:
∂F∂ux=ux1+ux2+uy2,∂F∂uy=uy1+ux2+uy2 \frac{\partial F}{\partial u_x} = \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}}, \quad \frac{\partial F}{\partial u_y} = \frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} ∂ux∂F=1+ux2+uy2 ux,∂uy∂F=1+ux2+uy2 uy

因此,欧拉-拉格朗日方程变为:
−∂∂x(ux1+ux2+uy2)−∂∂y(uy1+ux2+uy2)=0 -\frac{\partial}{\partial x} \left( \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}} \right) - \frac{\partial}{\partial y} \left( \frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} \right) = 0 −∂x∂⎝⎛1+ux2+uy2 ux⎠⎞−∂y∂⎝⎛1+ux2+uy2 uy⎠⎞=0

或等价地:
∂∂x(ux1+ux2+uy2)+∂∂y(uy1+ux2+uy2)=0 \frac{\partial}{\partial x} \left( \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}} \right) + \frac{\partial}{\partial y} \left( \frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} \right) = 0 ∂x∂⎝⎛1+ux2+uy2 ux⎠⎞+∂y∂⎝⎛1+ux2+uy2 uy⎠⎞=0

这是最小面积曲面的欧拉-拉格朗日 PDE。边界条件为 u(x,y)=ϕ(x,y) u(x, y) = \phi(x, y) u(x,y)=ϕ(x,y) on Γ \Gamma Γ.

部分 (b)

势能泛函为:
E=kS−∬Dfudxdy=∬D[k1+ux2+uy2−fu]dxdy E = kS - \iint_{D} f u dxdy = \iint_{D} \left[ k \sqrt{1 + u_x^2 + u_y^2} - f u \right] dxdy E=kS−∬Dfudxdy=∬D[k1+ux2+uy2 −fu]dxdy

定义被积函数 F=k1+ux2+uy2−fu F = k \sqrt{1 + u_x^2 + u_y^2} - f u F=k1+ux2+uy2 −fu。欧拉-拉格朗日方程为:
∂F∂u−∂∂x(∂F∂ux)−∂∂y(∂F∂uy)=0 \frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \left( \frac{\partial F}{\partial u_x} \right) - \frac{\partial}{\partial y} \left( \frac{\partial F}{\partial u_y} \right) = 0 ∂u∂F−∂x∂(∂ux∂F)−∂y∂(∂uy∂F)=0

计算偏导数:
∂F∂u=−f \frac{\partial F}{\partial u} = -f ∂u∂F=−f
∂F∂ux=k⋅ux1+ux2+uy2,∂F∂uy=k⋅uy1+ux2+uy2 \frac{\partial F}{\partial u_x} = k \cdot \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}}, \quad \frac{\partial F}{\partial u_y} = k \cdot \frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} ∂ux∂F=k⋅1+ux2+uy2 ux,∂uy∂F=k⋅1+ux2+uy2 uy

因此,
∂∂x(∂F∂ux)=k∂∂x(ux1+ux2+uy2),∂∂y(∂F∂uy)=k∂∂y(uy1+ux2+uy2) \frac{\partial}{\partial x} \left( \frac{\partial F}{\partial u_x} \right) = k \frac{\partial}{\partial x} \left( \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}} \right), \quad \frac{\partial}{\partial y} \left( \frac{\partial F}{\partial u_y} \right) = k \frac{\partial}{\partial y} \left( \frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} \right) ∂x∂(∂ux∂F)=k∂x∂⎝⎛1+ux2+uy2 ux⎠⎞,∂y∂(∂uy∂F)=k∂y∂⎝⎛1+ux2+uy2 uy⎠⎞

代入欧拉-拉格朗日方程:
−f−k∂∂x(ux1+ux2+uy2)−k∂∂y(uy1+ux2+uy2)=0 -f - k \frac{\partial}{\partial x} \left( \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}} \right) - k \frac{\partial}{\partial y} \left( \frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} \right) = 0 −f−k∂x∂⎝⎛1+ux2+uy2 ux⎠⎞−k∂y∂⎝⎛1+ux2+uy2 uy⎠⎞=0

整理得:
k[∂∂x(ux1+ux2+uy2)+∂∂y(uy1+ux2+uy2)]=−f k \left[ \frac{\partial}{\partial x} \left( \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}} \right) + \frac{\partial}{\partial y} \left( \frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} \right) \right] = -f k⎣⎡∂x∂⎝⎛1+ux2+uy2 ux⎠⎞+∂y∂⎝⎛1+ux2+uy2 uy⎠⎞⎦⎤=−f


∂∂x(ux1+ux2+uy2)+∂∂y(uy1+ux2+uy2)=−fk \frac{\partial}{\partial x} \left( \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}} \right) + \frac{\partial}{\partial y} \left( \frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} \right) = -\frac{f}{k} ∂x∂⎝⎛1+ux2+uy2 ux⎠⎞+∂y∂⎝⎛1+ux2+uy2 uy⎠⎞=−kf

这是最小能量曲面的欧拉-拉格朗日 PDE。边界条件同样为 u(x,y)=ϕ(x,y) u(x, y) = \phi(x, y) u(x,y)=ϕ(x,y) on Γ \Gamma Γ.

答案

(a) 最小面积曲面的欧拉-拉格朗日 PDE 为:
∂∂x(ux1+ux2+uy2)+∂∂y(uy1+ux2+uy2)=0 \frac{\partial}{\partial x} \left( \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}} \right) + \frac{\partial}{\partial y} \left( \frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} \right) = 0 ∂x∂⎝⎛1+ux2+uy2 ux⎠⎞+∂y∂⎝⎛1+ux2+uy2 uy⎠⎞=0

(b) 最小能量曲面的欧拉-拉格朗日 PDE 为:
∂∂x(ux1+ux2+uy2)+∂∂y(uy1+ux2+uy2)=−fk \frac{\partial}{\partial x} \left( \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}} \right) + \frac{\partial}{\partial y} \left( \frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}} \right) = -\frac{f}{k} ∂x∂⎝⎛1+ux2+uy2 ux⎠⎞+∂y∂⎝⎛1+ux2+uy2 uy⎠⎞=−kf

相关推荐
机器学习之心3 分钟前
量子遗传算法是一种将量子计算原理与遗传算法相结合的智能优化算法,代表了进化计算的一个有趣分支
算法·量子计算
Miraitowa_cheems17 分钟前
LeetCode算法日记 - Day 59: 字母大小写全排列、优美的排列
java·数据结构·算法·leetcode·决策树·职场和发展·深度优先
未知陨落1 小时前
LeetCode:81.爬楼梯
算法·leetcode
SHtop111 小时前
排序算法(golang实现)
算法·golang·排序算法
Rain_is_bad2 小时前
初识c语言————数学库函数
c语言·开发语言·算法
艾醒3 小时前
大模型面试题剖析:模型微调中冷启动与热启动的概念、阶段与实例解析
深度学习·算法
新学笺4 小时前
数据结构与算法 —— 从基础到进阶:带哨兵的单向链表,彻底解决边界处理痛点
算法
智者知已应修善业4 小时前
【51单片机计时器1中断的60秒数码管倒计时】2023-1-23
c语言·经验分享·笔记·嵌入式硬件·算法·51单片机
Jiezcode4 小时前
LeetCode 148.排序链表
数据结构·c++·算法·leetcode·链表
Asmalin4 小时前
【代码随想录day 29】 力扣 406.根据身高重建队列
算法·leetcode·职场和发展