-
🍨 本文为 🔗365天深度学习训练营中的学习记录博客
-
🍖 原作者: K同学啊
目录
[1.1 导入数据](#1.1 导入数据)
[1.2 数据可视化](#1.2 数据可视化)
[2.1 数据集预处理](#2.1 数据集预处理)
[2.2 设置X,y](#2.2 设置X,y)
[2.3 划分数据集](#2.3 划分数据集)
[3.1 构建模型](#3.1 构建模型)
[3.2 定义训练函数](#3.2 定义训练函数)
[3.3 定义测试函数](#3.3 定义测试函数)
[3.4 正式训练模型](#3.4 正式训练模型)
[4.1 LOSS图](#4.1 LOSS图)
[4.2 调用模型进行预测](#4.2 调用模型进行预测)
[4.3 R2值评估](#4.3 R2值评估)
一、前期准备
import torch.nn.functional as F
import numpy as np
import pandas as pd
import torch
from torch import nn
1.1 导入数据
data = pd.read_csv("woodpine2.csv")
data

1.2 数据可视化
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams['savefig.dpi'] = 500 # 图片像素
plt.rcParams['figure.dpi'] = 500 # 分辨率
fig, ax = plt.subplots(1, 3, constrained_layout=True, figsize=(14, 3))
sns.lineplot(data=data["Tem1"], ax=ax[0])
sns.lineplot(data=data["CO 1"], ax=ax[1])
sns.lineplot(data=data["Soot 1"], ax=ax[2])
plt.show()

dataFrame = data.iloc[:,1:]
dataFrame

二、构建数据集
2.1 数据集预处理
from sklearn.preprocessing import MinMaxScaler
dataFrame = data.iloc[:,1:].copy()
sc = MinMaxScaler(feature_range=(0, 1)) # 将数据归一化,范围是0到1
for i in ['CO 1', 'Soot 1', 'Tem1']:
dataFrame[i] = sc.fit_transform(dataFrame[i].values.reshape(-1, 1))
dataFrame.shape
2.2 设置X,y
width_x = 8
width_y = 1
# 取前8个时间段的Tem1、CO 1、Soot 1为X,第9个时间段的Tem1为y。
X = []
y = []
in_start = 0
for _, _ in data.iterrows():
in_end = in_start + width_x
out_end = in_end + width_y
if out_end < len(dataFrame):
X_ = np.array(dataFrame.iloc[in_start:in_end, ])
y_ = np.array(dataFrame.iloc[in_end:out_end, 0])
X.append(X_)
y.append(y_)
in_start += 1
X = np.array(X)
y = np.array(y).reshape(-1,1,1)
X.shape, y.shape
2.3 划分数据集
X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch.float32)
X_test = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test = torch.tensor(np.array(y[5000:]), dtype=torch.float32)
X_train.shape, y_train.shape
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
batch_size=64,
shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
batch_size=64,
shuffle=False)
三、模型训练
3.1 构建模型
class model_lstm(nn.Module):
def __init__(self):
super(model_lstm, self).__init__()
self.lstm0 = nn.LSTM(input_size=3, hidden_size=320,
num_layers=1, batch_first=True)
self.lstm1 = nn.LSTM(input_size=320, hidden_size=320,
num_layers=1, batch_first=True)
self.fc0 = nn.Linear(320, 1)
def forward(self, x):
out, hidden1 = self.lstm0(x)
out, _ = self.lstm1(out, hidden1)
out = self.fc0(out)
return out[:, -1:, :] #取1个预测值,否则经过lstm会得到8*1个预测
model = model_lstm()
model

3.2 定义训练函数
# 训练循环
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None):
size = len(train_dl.dataset)
num_batches = len(train_dl)
train_loss = 0 # 初始化训练损失和正确率
for x, y in train_dl:
x, y = x.to(device), y.to(device)
# 计算预测误差
pred = model(x) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距
# 反向传播
opt.zero_grad() # grad属性归零
loss.backward() # 反向传播
opt.step() # 每一步自动更新
# 记录loss
train_loss += loss.item()
if lr_scheduler is not None:
lr_scheduler.step()
print("learning rate = {:.5f}".format(opt.param_groups[0]['lr']), end=" ")
train_loss /= num_batches
return train_loss
3.3 定义测试函数
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目
test_loss = 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for x, y in dataloader:
x, y = x.to(device), y.to(device)
# 计算loss
y_pred = model(x)
loss = loss_fn(y_pred, y)
test_loss += loss.item()
test_loss /= num_batches
return test_loss
3.4 正式训练模型
#设置GPU训练
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
#训练模型
model = model_lstm()
model = model.to(device)
loss_fn = nn.MSELoss() # 创建损失函数
learn_rate = 1e-1 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate,weight_decay=1e-4)
epochs = 50
train_loss = []
test_loss = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt,epochs, last_epoch=-1)
for epoch in range(epochs):
model.train()
epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)
model.eval()
epoch_test_loss = test(test_dl, model, loss_fn)
train_loss.append(epoch_train_loss)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_loss:{:.5f}, Test_loss:{:.5f}')
print(template.format(epoch+1, epoch_train_loss, epoch_test_loss))
print("="*20, 'Done', "="*20)

四、模型评估
4.1 LOSS图
import matplotlib.pyplot as plt
from datetime import datetime
current_time = datetime.now() # 获取当前时间
plt.figure(figsize=(5, 3), dpi=120)
plt.plot(train_loss, label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.legend()
plt.show()

4.2 调用模型进行预测
predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))
y_test_1 = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]
plt.figure(figsize=(5, 3), dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')
plt.title('Title')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

4.3 R2值评估
from sklearn import metrics
"""
RMSE :均方根误差 -----> 对均方误差开方
R2 :决定系数,可以简单理解为反映模型拟合优度的重要的统计量
"""
RMSE_lstm = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm = metrics.r2_score(predicted_y_lstm_one, y_test_1)
print('均方根误差: %.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)
