3-机器学习与大模型开发数学教程-第0章 预备知识-0-3 函数初步(多项式、指数、对数、三角函数、反函数)

在数学和机器学习中,函数是最重要的概念之一。直观上,函数就像是一台"机器",输入一个数,经过一系列规则加工,输出另一个数。比如你把苹果放进榨汁机,出来的是苹果汁------这就是"输入"和"输出"的关系。

在机器学习里,模型本质上就是一个复杂的函数:输入数据(图像、文本、音频),输出预测结果(分类、生成、翻译)。所以打好函数的基础,对理解 AI 模型至关重要。


1. 多项式函数

最常见的函数就是 多项式函数,形式为:

f(x)=anxn+an−1xn−1+⋯+a1x+a0f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0f(x)=anxn+an−1xn−1+⋯+a1x+a0

比如:

  • 一次函数:f(x)=2x+3f(x)=2x+3f(x)=2x+3(直线)
  • 二次函数:f(x)=x2−4x+3f(x)=x^2-4x+3f(x)=x2−4x+3(抛物线)

直观类比 :多项式函数就像是"配方",把原料 xxx 按照不同的比例(系数)和加工方式(幂次方)混合起来。

在机器学习中:线性回归模型就是最简单的一次多项式;更复杂的模型(比如神经网络)可以看作是多项式函数的组合。


2. 指数函数

指数函数的基本形式是:

f(x)=ax(a>0,a≠1)f(x) = a^x \quad (a>0, a \neq 1)f(x)=ax(a>0,a=1)

  • 当 a>1a > 1a>1 时,函数呈 指数增长(比如病毒传播、互联网用户数增长)。
  • 当 $0 时,函数呈 指数衰减(比如药物浓度随时间下降)。

在机器学习中

  • 学习率衰减常用指数函数。
  • 概率分布(如 softmax 函数)中也有指数运算。

3. 对数函数

对数函数是指数函数的反函数:

f(x)=log⁡a(x)(a>0,a≠1)f(x) = \log_a(x) \quad (a>0, a \neq 1)f(x)=loga(x)(a>0,a=1)

含义:回答"某个数是底数 aaa 的几次幂?"

例如:log⁡2(8)=3\log_2(8)=3log2(8)=3,因为 23=82^3=823=8。

直观类比

指数函数是"复利滚雪球",对数函数是"问雪球有多大时,它是滚了几次"。

在机器学习中

  • 信息论中的 信息熵、交叉熵损失函数用到对数。
  • 对数常用来缩放数据,解决数值过大问题。

4. 三角函数

三角函数与角度和周期现象相关,比如:

sin⁡(x),cos⁡(x),tan⁡(x)\sin(x), \quad \cos(x), \quad \tan(x)sin(x),cos(x),tan(x)

它们的特点是 周期性,经常用来描述波动。

直观类比:海浪的起伏、四季的变化、电台的信号,都是周期性的,可以用三角函数建模。

在机器学习中

  • Transformer 的位置编码(Positional Encoding)就使用了正弦和余弦函数,帮助模型理解序列的顺序。

5. 反函数

一个函数如果可以"逆转过程",就有 反函数

比如:

  • 指数函数 y=2xy=2^xy=2x 的反函数是对数函数 y=log⁡2(x)y=\log_2(x)y=log2(x)。
  • 平方函数 y=x2y=x^2y=x2 的反函数(在非负数范围内)是平方根函数 y=xy=\sqrt{x}y=x 。

我们可以用一个 Mermaid 图来展示函数与反函数的关系:
函数 f 反函数 f_inverse x 输入 y 输出

说明

  • 函数 fff 把输入 xxx 变成输出 yyy。
  • 反函数 f−1f^{-1}f−1 把 yyy 再还原成 xxx。
  • 两者是互逆的,就像"加法"和"减法","加密"和"解密"。

从几何角度来看,函数与反函数的图像是 关于直线 y=xy=xy=x 对称的


总结

  • 多项式:机器学习的基本模型(线性回归就是一次多项式)。
  • 指数与对数:描述增长与衰减,在概率和损失函数中常见。
  • 三角函数:处理周期性问题,比如 Transformer 的位置编码。
  • 反函数:理解"可逆映射",帮助我们把"结果"还原成"输入"。

函数世界是整个数学和机器学习的基础。后续的微积分、线性代数、概率论,几乎都离不开函数的概念。

相关推荐
勿在浮沙筑高台3 小时前
海龟交易系统R
前端·人工智能·r语言
王哈哈^_^3 小时前
【数据集】【YOLO】【目标检测】口罩数据集,口罩佩戴识别数据集 1971 张,YOLO佩戴口罩检测算法实战训练教程。
人工智能·算法·yolo·目标检测·计算机视觉·ai·视觉检测
文火冰糖的硅基工坊4 小时前
[人工智能-大模型-83]:模型层技术 - 前向预测:神经网络是如何产生涌现智能的?背后的本质是什么?
人工智能·深度学习·神经网络
taxunjishu4 小时前
西门子 1500 PLC 依托 Ethernet/ip 转 Modbus RTU联合发那科机器人优化生产流程
人工智能·区块链·工业物联网·工业自动化·总线协议
一介书生-0074 小时前
2025-10-27 Java AI学习路线
java·人工智能·学习
rengang664 小时前
AI辅助需求分析:AI大模型将自然语言需求转化为技术规格
人工智能·需求分析·ai编程·1024程序员节·ai智能体编程
子不语1804 小时前
深度学习——IDE之Jupyter
人工智能·深度学习·jupyter
AI小云5 小时前
【Python高级编程】类和实例化
开发语言·人工智能·python
格林威5 小时前
紫外工业相机入门介绍和工业检测核心场景
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测
高洁015 小时前
【无标题】大模型-模型压缩:量化、剪枝、蒸馏、二值化 (2
人工智能·python·深度学习·神经网络·知识图谱