深度学习中显性特征组合的网络结构crossNet

crossNet

论文获取

1、原理

这个网络结构最开始提出来是在推荐领域,其核心作用就是在不增加太多参数与内存的下显式实现特征交叉组合 .其公式如下: x l x_{l} xl是第l层的输出, x 0 x_{0} x0是原始输入,那么第 x l + 1 x_{l+1} xl+1层就等于原始输入乘以上一层输出实现交叉后加上上一层输出;这样一层就是 x 2 x^2 x2的交叉,两层就有 x 3 x^3 x3的交叉,依次类推,这样就确保实现高阶的特征交叉组合.且其参数是线性增长的.

2、原理分析

  • 首先从公式看其维度是不发生变化的,所以其高阶信息是压缩过的
  • 注意到公式加上一层信息,因此不同层组合,展开其最后一层输出有保留低阶到高阶的的组合信息,但可能存在部分丢失问题
  • 该结构适合在原始输入端使用,代替特征交叉组合的特征工程
  • 该结构不建议过多层,容易导致过拟合,一般1~3层
  • 该结构适合特征本身有交叉关系的场景使用
  • 该结构使用稀疏与稠密的输入

3、实现

以torch 为例,当然实际应用通常希望加一点正则防止过拟合,此时可以通过优化器指定增加该部分结构的权重正则.

python 复制代码
crossnet = CrossNet(...)
crossnet_params = []
othernet = OtherNet(...)
#获取crossnet参数
for name, param in model.named_parameters():
    if "crossnet" in name:
        crossnet_params.append(param)
optimizer = torch.optim.Adam([
    {"params": crossnet.weights, "weight_decay":1e-4}, 
    {"params": crossnet.biases, "weight_decay":0}
], lr=0.001)
python 复制代码
class CrossNet(nn.Module):
    def __init__(self, in_features, num_layers):
        super(CrossNet, self).__init__()
        self.num_layers = num_layers
        self.in_features = in_features
        self.weights = nn.ParameterList([
            nn.Parameter(torch.randn(in_features, 1)) for _ in range(num_layers)
        ])
        self.biases = nn.ParameterList([
            nn.Parameter(torch.randn(in_features)) for _ in range(num_layers)
        ])
        self.reset_parameters()
	def forward(self, x0):
        x = x0
        for i in range(self.num_layers):
            # x: (batch, in_features)
            # x @ w: (batch, 1)
            xw = torch.matmul(x, self.weights[i])  # (batch, 1)
            # x0 * (x @ w) : broadcasting (batch, in_features)
            cross = x0 * xw  # broadcasting
            x = cross + self.biases[i] + x  # (batch, in_features)
        return x
    def reset_parameters(self):
        # 用合理的初始化方法初始化 weights 和 biases
        for w in self.weights:
            nn.init.xavier_uniform_(w)
        for b in self.biases:
            nn.init.zeros_(b)
相关推荐
Godspeed Zhao3 分钟前
自动驾驶中的传感器技术65——Navigation(2)
人工智能·机器学习·自动驾驶
智能交通技术5 分钟前
iTSTech:智慧物流中自动驾驶、无人机与机器人的协同应用场景分析 2025
人工智能·机器学习·机器人·自动驾驶·无人机
先把态度摆正5 分钟前
自动驾驶决策规划算法(开幕式)
人工智能·机器学习·自动驾驶
风遥~27 分钟前
快速了解并使用Matplotlib库
人工智能·python·数据分析·matplotlib
用户51914958484530 分钟前
每个JavaScript开发者都应掌握的33个核心概念
人工智能·aigc
看今朝·1 小时前
【软件工程3.0】以UTDD/ATDD的理念深度融入AI生产流程
人工智能·软件工程·软件工程3.0·ai生产过程
IT古董2 小时前
【第五章:计算机视觉-项目实战之图像分割实战】2.图像分割实战:人像抠图-(5)模型训练与测试
人工智能·计算机视觉
qq_314009832 小时前
大模型之用LLaMA-Factory微调Deepseek-r1-8b模型实践
人工智能·语言模型
丁学文武2 小时前
大模型原理与实践:第三章-预训练语言模型详解_第2部分-Encoder-Decoder-T5
人工智能·语言模型·自然语言处理·大模型·t5·encoder-decoder
IT_陈寒2 小时前
「Redis性能翻倍的5个核心优化策略:从数据结构选择到持久化配置全解析」
前端·人工智能·后端