深度学习中显性特征组合的网络结构crossNet

crossNet

论文获取

1、原理

这个网络结构最开始提出来是在推荐领域,其核心作用就是在不增加太多参数与内存的下显式实现特征交叉组合 .其公式如下: x l x_{l} xl是第l层的输出, x 0 x_{0} x0是原始输入,那么第 x l + 1 x_{l+1} xl+1层就等于原始输入乘以上一层输出实现交叉后加上上一层输出;这样一层就是 x 2 x^2 x2的交叉,两层就有 x 3 x^3 x3的交叉,依次类推,这样就确保实现高阶的特征交叉组合.且其参数是线性增长的.

2、原理分析

  • 首先从公式看其维度是不发生变化的,所以其高阶信息是压缩过的
  • 注意到公式加上一层信息,因此不同层组合,展开其最后一层输出有保留低阶到高阶的的组合信息,但可能存在部分丢失问题
  • 该结构适合在原始输入端使用,代替特征交叉组合的特征工程
  • 该结构不建议过多层,容易导致过拟合,一般1~3层
  • 该结构适合特征本身有交叉关系的场景使用
  • 该结构使用稀疏与稠密的输入

3、实现

以torch 为例,当然实际应用通常希望加一点正则防止过拟合,此时可以通过优化器指定增加该部分结构的权重正则.

python 复制代码
crossnet = CrossNet(...)
crossnet_params = []
othernet = OtherNet(...)
#获取crossnet参数
for name, param in model.named_parameters():
    if "crossnet" in name:
        crossnet_params.append(param)
optimizer = torch.optim.Adam([
    {"params": crossnet.weights, "weight_decay":1e-4}, 
    {"params": crossnet.biases, "weight_decay":0}
], lr=0.001)
python 复制代码
class CrossNet(nn.Module):
    def __init__(self, in_features, num_layers):
        super(CrossNet, self).__init__()
        self.num_layers = num_layers
        self.in_features = in_features
        self.weights = nn.ParameterList([
            nn.Parameter(torch.randn(in_features, 1)) for _ in range(num_layers)
        ])
        self.biases = nn.ParameterList([
            nn.Parameter(torch.randn(in_features)) for _ in range(num_layers)
        ])
        self.reset_parameters()
	def forward(self, x0):
        x = x0
        for i in range(self.num_layers):
            # x: (batch, in_features)
            # x @ w: (batch, 1)
            xw = torch.matmul(x, self.weights[i])  # (batch, 1)
            # x0 * (x @ w) : broadcasting (batch, in_features)
            cross = x0 * xw  # broadcasting
            x = cross + self.biases[i] + x  # (batch, in_features)
        return x
    def reset_parameters(self):
        # 用合理的初始化方法初始化 weights 和 biases
        for w in self.weights:
            nn.init.xavier_uniform_(w)
        for b in self.biases:
            nn.init.zeros_(b)
相关推荐
2401_8414956416 分钟前
【语音识别】混合高斯模型
人工智能·python·算法·机器学习·语音识别·gmm·混合高斯模型
哥布林学者18 分钟前
吴恩达深度学习课程二: 改善深层神经网络 第一周:深度学习的实践(五)归一化
深度学习·ai
乌恩大侠21 分钟前
英伟达开源了其 Aerial 软件,以加速 AI 原生 6G 的发展。
人工智能·开源
杭州杭州杭州35 分钟前
深度学习(1)---基础概念扫盲
人工智能·深度学习
金智维科技官方42 分钟前
破解流程内耗,金智维流程自动化平台如何激活企业效率?
人工智能·ai·自动化·数字化
Brsentibi1 小时前
深度学习—数据标注—label-studio
深度学习·数据标注·label-studio·yolo数据集自制
私域实战笔记1 小时前
SCRM平台对比推荐:以企业微信私域运营需求为核心的参考
大数据·人工智能·企业微信·scrm·企业微信scrm
格林威1 小时前
AOI在FPC制造领域的检测应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造
utmhikari1 小时前
【GitHub探索】代码开发AI辅助工具trae-agent
人工智能·ai·大模型·llm·github·agent·trae
IT_陈寒2 小时前
Python数据处理速度慢?5行代码让你的Pandas提速300% 🚀
前端·人工智能·后端