深度学习中显性特征组合的网络结构crossNet

crossNet

论文获取

1、原理

这个网络结构最开始提出来是在推荐领域,其核心作用就是在不增加太多参数与内存的下显式实现特征交叉组合 .其公式如下: x l x_{l} xl是第l层的输出, x 0 x_{0} x0是原始输入,那么第 x l + 1 x_{l+1} xl+1层就等于原始输入乘以上一层输出实现交叉后加上上一层输出;这样一层就是 x 2 x^2 x2的交叉,两层就有 x 3 x^3 x3的交叉,依次类推,这样就确保实现高阶的特征交叉组合.且其参数是线性增长的.

2、原理分析

  • 首先从公式看其维度是不发生变化的,所以其高阶信息是压缩过的
  • 注意到公式加上一层信息,因此不同层组合,展开其最后一层输出有保留低阶到高阶的的组合信息,但可能存在部分丢失问题
  • 该结构适合在原始输入端使用,代替特征交叉组合的特征工程
  • 该结构不建议过多层,容易导致过拟合,一般1~3层
  • 该结构适合特征本身有交叉关系的场景使用
  • 该结构使用稀疏与稠密的输入

3、实现

以torch 为例,当然实际应用通常希望加一点正则防止过拟合,此时可以通过优化器指定增加该部分结构的权重正则.

python 复制代码
crossnet = CrossNet(...)
crossnet_params = []
othernet = OtherNet(...)
#获取crossnet参数
for name, param in model.named_parameters():
    if "crossnet" in name:
        crossnet_params.append(param)
optimizer = torch.optim.Adam([
    {"params": crossnet.weights, "weight_decay":1e-4}, 
    {"params": crossnet.biases, "weight_decay":0}
], lr=0.001)
python 复制代码
class CrossNet(nn.Module):
    def __init__(self, in_features, num_layers):
        super(CrossNet, self).__init__()
        self.num_layers = num_layers
        self.in_features = in_features
        self.weights = nn.ParameterList([
            nn.Parameter(torch.randn(in_features, 1)) for _ in range(num_layers)
        ])
        self.biases = nn.ParameterList([
            nn.Parameter(torch.randn(in_features)) for _ in range(num_layers)
        ])
        self.reset_parameters()
	def forward(self, x0):
        x = x0
        for i in range(self.num_layers):
            # x: (batch, in_features)
            # x @ w: (batch, 1)
            xw = torch.matmul(x, self.weights[i])  # (batch, 1)
            # x0 * (x @ w) : broadcasting (batch, in_features)
            cross = x0 * xw  # broadcasting
            x = cross + self.biases[i] + x  # (batch, in_features)
        return x
    def reset_parameters(self):
        # 用合理的初始化方法初始化 weights 和 biases
        for w in self.weights:
            nn.init.xavier_uniform_(w)
        for b in self.biases:
            nn.init.zeros_(b)
相关推荐
程序员佳佳2 分钟前
【万字硬核】从零构建企业级AI中台:基于Vector Engine整合GPT-5.2、Sora2与Veo3的落地实践指南
人工智能·gpt·chatgpt·ai作画·aigc·api·ai编程
weixin_437988123 分钟前
范式推出面向AGI的Phanthy平台
人工智能·agi
Hcoco_me23 分钟前
RNN(循环神经网络)
人工智能·rnn·深度学习
踏浪无痕31 分钟前
AI 时代架构师如何有效成长?
人工智能·后端·架构
AI 智能服务32 分钟前
第6课__本地工具调用(文件操作)
服务器·人工智能·windows·php
clorisqqq1 小时前
人工智能现代方法笔记 第1章 绪论(1/2)
人工智能·笔记
kisshuan123961 小时前
YOLO11-RepHGNetV2实现甘蔗田杂草与作物区域识别详解
人工智能·计算机视觉·目标跟踪
焦耳热科技前沿1 小时前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
C+-C资深大佬1 小时前
Creo 11.0 全功能解析:多体设计 + 仿真制造,机械设计效率翻倍下载安装
人工智能
浔川python社1 小时前
【维护期间重要提醒】请勿使用浔川 AI 翻译 v6.0 翻译违规内容
人工智能