如何自动生成ONNX模型?

如何自动生成ONNX模型?​​

实际开发中,我们通常​​从现有深度学习框架自动导出ONNX模型​​,而非手动编写。以下是主流框架的自动转换方法:

​​1. PyTorch → ONNX(最常用)​​

PyTorch内置了ONNX导出功能,只需一行代码:

python 复制代码
import torch
import torch.nn as nn

假设有一个PyTorch模型

python 复制代码
class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(10, 5)
    def forward(self, x):
        return self.linear(x)

model = MyModel()
dummy_input = torch.randn(1, 10)  # 虚拟输入(用于追踪计算图)

自动导出为ONNX

python 复制代码
torch.onnx.export(
    model,               # PyTorch模型
    dummy_input,         # 示例输入(用于确定输入形状)
    "model.onnx",        # 输出文件名
    input_names=["X"],   # 输入节点名称
    output_names=["Y"],  # 输出节点名称
    dynamic_axes={
        "X": {0: "batch"},  # 动态维度(如可变batch_size)
        "Y": {0: "batch"}
    }
)

​​关键点​​:

torch.onnx.export会自动追踪模型的计算图并转换为ONNX格式。

dynamic_axes允许定义动态维度(如可变batch_size)。

​​2. TensorFlow/Keras → ONNX​​
使用 tf2onnx工具自动转换

python 复制代码
import tensorflow as tf
import tf2onnx

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(5, input_shape=(10,))
])

保存为SavedModel格式(或直接转换)

python 复制代码
tf.saved_model.save(model, "tmp_model")

转换为ONNX

python 复制代码
cmd = f"python -m tf2onnx.convert --saved-model tmp_model --output model.onnx"
!{cmd}  # 在Jupyter中执行命令行(或直接在终端运行)

​​总结​​

​​95%的实战场景​​:直接用 torch.onnx.export或 tf2onnx自动转换。

​​特殊需求​​才需要手动编写ONNX(如你的代码),但需注意手动编写容易出错(例如形状不匹配)。需要熟悉ONNX的算子规范(如支持哪些操作、属性如何设置)。

相关推荐
chenzhiyuan20183 分钟前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-1439 分钟前
51c深度学习~合集11
人工智能
Tiandaren17 分钟前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
领航猿1号1 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
综合热讯1 小时前
宠智灵宠物识别AI:从犬猫到鸟鱼的全生态智能识别
人工智能·宠物
zskj_zhyl1 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
永霖光电_UVLED2 小时前
IVWorks率先将8英寸GaN纳米线片商业化
人工智能·神经网络·生成对抗网络
如何原谅奋力过但无声2 小时前
TensorFlow 2.x常用函数总结(持续更新)
人工智能·python·tensorflow
qyresearch_3 小时前
大语言模型训推一体机:AI算力革命的“新引擎”,2031年市场规模突破123亿的黄金赛道
人工智能·语言模型·自然语言处理
计算机小手3 小时前
使用 llama.cpp 在本地高效运行大语言模型,支持 Docker 一键启动,兼容CPU与GPU
人工智能·经验分享·docker·语言模型·开源软件