如何自动生成ONNX模型?

如何自动生成ONNX模型?​​

实际开发中,我们通常​​从现有深度学习框架自动导出ONNX模型​​,而非手动编写。以下是主流框架的自动转换方法:

​​1. PyTorch → ONNX(最常用)​​

PyTorch内置了ONNX导出功能,只需一行代码:

python 复制代码
import torch
import torch.nn as nn

假设有一个PyTorch模型

python 复制代码
class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(10, 5)
    def forward(self, x):
        return self.linear(x)

model = MyModel()
dummy_input = torch.randn(1, 10)  # 虚拟输入(用于追踪计算图)

自动导出为ONNX

python 复制代码
torch.onnx.export(
    model,               # PyTorch模型
    dummy_input,         # 示例输入(用于确定输入形状)
    "model.onnx",        # 输出文件名
    input_names=["X"],   # 输入节点名称
    output_names=["Y"],  # 输出节点名称
    dynamic_axes={
        "X": {0: "batch"},  # 动态维度(如可变batch_size)
        "Y": {0: "batch"}
    }
)

​​关键点​​:

torch.onnx.export会自动追踪模型的计算图并转换为ONNX格式。

dynamic_axes允许定义动态维度(如可变batch_size)。

​​2. TensorFlow/Keras → ONNX​​
使用 tf2onnx工具自动转换

python 复制代码
import tensorflow as tf
import tf2onnx

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(5, input_shape=(10,))
])

保存为SavedModel格式(或直接转换)

python 复制代码
tf.saved_model.save(model, "tmp_model")

转换为ONNX

python 复制代码
cmd = f"python -m tf2onnx.convert --saved-model tmp_model --output model.onnx"
!{cmd}  # 在Jupyter中执行命令行(或直接在终端运行)

​​总结​​

​​95%的实战场景​​:直接用 torch.onnx.export或 tf2onnx自动转换。

​​特殊需求​​才需要手动编写ONNX(如你的代码),但需注意手动编写容易出错(例如形状不匹配)。需要熟悉ONNX的算子规范(如支持哪些操作、属性如何设置)。

相关推荐
青瓷程序设计14 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
daidaidaiyu15 小时前
一文入门 LangGraph 开发
python·ai
金智维科技官方15 小时前
RPA财务机器人为企业高质量发展注入动能
人工智能·机器人·rpa·财务
沫儿笙16 小时前
安川机器人tag焊接怎么节省保护气
人工智能·物联网·机器人
2501_9411474216 小时前
人工智能赋能智慧教育互联网应用:智能学习与教育管理优化实践探索》
人工智能
阿龙AI日记16 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
爱写代码的小朋友16 小时前
“数字镜像”与认知负能者:生成式AI个性化学习支持者的协同构建与伦理规制研究
人工智能
找方案16 小时前
新型智慧城市城市大数据应用解决方案
人工智能·智慧城市
K***728416 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
Chat_zhanggong34517 小时前
K4A8G165WC-BITD产品推荐
人工智能·嵌入式硬件·算法