如何自动生成ONNX模型?

如何自动生成ONNX模型?​​

实际开发中,我们通常​​从现有深度学习框架自动导出ONNX模型​​,而非手动编写。以下是主流框架的自动转换方法:

​​1. PyTorch → ONNX(最常用)​​

PyTorch内置了ONNX导出功能,只需一行代码:

python 复制代码
import torch
import torch.nn as nn

假设有一个PyTorch模型

python 复制代码
class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(10, 5)
    def forward(self, x):
        return self.linear(x)

model = MyModel()
dummy_input = torch.randn(1, 10)  # 虚拟输入(用于追踪计算图)

自动导出为ONNX

python 复制代码
torch.onnx.export(
    model,               # PyTorch模型
    dummy_input,         # 示例输入(用于确定输入形状)
    "model.onnx",        # 输出文件名
    input_names=["X"],   # 输入节点名称
    output_names=["Y"],  # 输出节点名称
    dynamic_axes={
        "X": {0: "batch"},  # 动态维度(如可变batch_size)
        "Y": {0: "batch"}
    }
)

​​关键点​​:

torch.onnx.export会自动追踪模型的计算图并转换为ONNX格式。

dynamic_axes允许定义动态维度(如可变batch_size)。

​​2. TensorFlow/Keras → ONNX​​
使用 tf2onnx工具自动转换

python 复制代码
import tensorflow as tf
import tf2onnx

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(5, input_shape=(10,))
])

保存为SavedModel格式(或直接转换)

python 复制代码
tf.saved_model.save(model, "tmp_model")

转换为ONNX

python 复制代码
cmd = f"python -m tf2onnx.convert --saved-model tmp_model --output model.onnx"
!{cmd}  # 在Jupyter中执行命令行(或直接在终端运行)

​​总结​​

​​95%的实战场景​​:直接用 torch.onnx.export或 tf2onnx自动转换。

​​特殊需求​​才需要手动编写ONNX(如你的代码),但需注意手动编写容易出错(例如形状不匹配)。需要熟悉ONNX的算子规范(如支持哪些操作、属性如何设置)。

相关推荐
"YOUDIG"8 小时前
AI智能匹配:一站式电脑配置推荐平台——科学原理与个性化服务解析
人工智能
AI视觉网奇8 小时前
图像编码成特征向量
人工智能·计算机视觉
勤奋的小王同学~8 小时前
(Coze-AI)智能体介绍 coze知识库和数据库资源
人工智能
树獭非懒8 小时前
AI 大模型应用开发|基础原理
人工智能·aigc·ai编程
AI营销实验室8 小时前
AI CRM系统升级,原圈科技赋能销售洞察
人工智能·科技
eve杭9 小时前
AI、大数据与智能时代:从理论基石到实战路径
人工智能·python·5g·网络安全·ai
TG:@yunlaoda360 云老大9 小时前
腾讯云国际站代理商的QAPM服务能提供哪些专属服务?
人工智能·云计算·腾讯云
明月满西楼9 小时前
4.2.1 分类任务
人工智能
AI_56789 小时前
Webpack5优化的“双引擎”
大数据·人工智能·性能优化
LZL_SQ10 小时前
昇腾NPU架构设计 从抽象硬件模型到物理实现
人工智能·昇腾·cann·ascend c