如何自动生成ONNX模型?

如何自动生成ONNX模型?​​

实际开发中,我们通常​​从现有深度学习框架自动导出ONNX模型​​,而非手动编写。以下是主流框架的自动转换方法:

​​1. PyTorch → ONNX(最常用)​​

PyTorch内置了ONNX导出功能,只需一行代码:

python 复制代码
import torch
import torch.nn as nn

假设有一个PyTorch模型

python 复制代码
class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(10, 5)
    def forward(self, x):
        return self.linear(x)

model = MyModel()
dummy_input = torch.randn(1, 10)  # 虚拟输入(用于追踪计算图)

自动导出为ONNX

python 复制代码
torch.onnx.export(
    model,               # PyTorch模型
    dummy_input,         # 示例输入(用于确定输入形状)
    "model.onnx",        # 输出文件名
    input_names=["X"],   # 输入节点名称
    output_names=["Y"],  # 输出节点名称
    dynamic_axes={
        "X": {0: "batch"},  # 动态维度(如可变batch_size)
        "Y": {0: "batch"}
    }
)

​​关键点​​:

torch.onnx.export会自动追踪模型的计算图并转换为ONNX格式。

dynamic_axes允许定义动态维度(如可变batch_size)。

​​2. TensorFlow/Keras → ONNX​​
使用 tf2onnx工具自动转换

python 复制代码
import tensorflow as tf
import tf2onnx

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(5, input_shape=(10,))
])

保存为SavedModel格式(或直接转换)

python 复制代码
tf.saved_model.save(model, "tmp_model")

转换为ONNX

python 复制代码
cmd = f"python -m tf2onnx.convert --saved-model tmp_model --output model.onnx"
!{cmd}  # 在Jupyter中执行命令行(或直接在终端运行)

​​总结​​

​​95%的实战场景​​:直接用 torch.onnx.export或 tf2onnx自动转换。

​​特殊需求​​才需要手动编写ONNX(如你的代码),但需注意手动编写容易出错(例如形状不匹配)。需要熟悉ONNX的算子规范(如支持哪些操作、属性如何设置)。

相关推荐
Cre_Des5 小时前
[学习笔记][机器学习-周志华] 第1章 绪论
人工智能·笔记·学习·机器学习
qq_251616195 小时前
在目标图像中查找带 Alpha 掩码的 PNG 图标
人工智能·opencv·计算机视觉
阿甘编程点滴5 小时前
口播提词器怎么选?手机提词器实测指南与参数推荐
人工智能·智能手机
九章云极AladdinEdu5 小时前
VC维(Vapnik-Chervonenkis Dimension)的故事:模型复杂度的衡量
人工智能·深度学习·机器学习·gpu算力·模型·vc维
九章云极AladdinEdu5 小时前
集成学习智慧:为什么Bagging(随机森林)和Boosting(XGBoost)效果那么好?
人工智能·随机森林·机器学习·强化学习·集成学习·boosting·ai研究
数智前线5 小时前
腾讯云,增长向何处?
人工智能
Code_流苏6 小时前
Gemini in Chrome深度解析:反垄断胜诉后,Chrome开启AI智能浏览时代!
前端·人工智能·chrome·gemini·智能时代·ai browser
lingliang6 小时前
机器学习中三个是基础的指标:准确率 (Accuracy)、精确率 (Precision) 和 召回率 (Recall)
人工智能·机器学习
千天夜6 小时前
多元函数可微性的完整证明方法与理解
人工智能·机器学习