Spring Cloud Sleuth 和 Zipkin 详解

Spring Cloud Sleuth 和 Zipkin 详解

1. Spring Cloud Sleuth

1.1 作用

  • 分布式链路追踪

    • 在微服务架构中,Sleuth 为每个请求生成唯一的追踪标识(Trace ID)并在服务之间传播。
    • 每个服务的处理过程会记录一个 Span(跨度),这些 Span 组成完整的链路。
  • 日志增强

    • 自动在日志中添加追踪信息(Trace ID 和 Span ID)。
    • 通过日志可以轻松找到某个请求的完整处理过程。
  • 与其他工具集成

    • 支持与分布式追踪系统(如 ZipkinJaeger)集成,提供可视化的链路追踪。
    • 与 Spring Boot 的日志框架(如 SLF4J、Logback)无缝集成。
  • 自动化

    • 自动为 HTTP 请求、消息队列(如 Kafka、RabbitMQ)等添加追踪信息,无需手动干预。

1.2 工作原理

  • Trace ID
    • 每个请求生成一个唯一的 Trace ID,用于标识整个请求链路。
  • Span ID
    • 每个服务的处理过程生成一个 Span ID,用于标识该服务的处理阶段。
  • 传播机制
    • Sleuth 使用 HTTP Headers 或消息队列的元数据来传播 Trace ID 和 Span ID。

1.3 使用场景

  • 微服务架构
    • 跟踪请求的流转路径,定位问题。
  • 性能分析
    • 发现性能瓶颈,例如某个服务处理时间过长。
  • 调试和故障排查
    • 通过日志中的 Trace ID 和 Span ID 快速定位问题。

1.4 配置示例

Maven 依赖
xml 复制代码
<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-sleuth</artifactId>
    <version>3.1.2</version>
</dependency>

1.5 日志示例

ini 复制代码
2025-09-25 10:00:00 INFO [service-a,traceId=1234567890abcdef,spanId=abcdef123456] - Processing request
2025-09-25 10:00:01 INFO [service-b,traceId=1234567890abcdef,spanId=123456abcdef] - Handling response

2. Zipkin

2.1 作用

  • 数据收集
    • Zipkin 接收来自应用程序的链路追踪数据(包括 Trace ID 和 Span ID)。
  • 数据存储
    • 将追踪数据存储到数据库中(如 MySQL、Elasticsearch)。
  • 数据可视化
    • 提供图形化界面,展示请求的流转路径、各服务的处理时间等。
  • 集中化管理
    • 将多个服务的追踪数据集中存储,方便跨服务分析。
  • 性能分析
    • 识别请求的瓶颈,分析服务的响应时间。

2.2 为什么需要 Zipkin

  • Sleuth 只负责生成和传播追踪信息
    • Sleuth 不存储数据,也没有可视化界面。
  • Zipkin 提供存储和可视化功能
    • Zipkin 收集 Sleuth 生成的追踪数据,并提供集中化管理和可视化界面。
  • 两者结合实现完整的链路追踪解决方案
    • Sleuth 负责生成和传播追踪信息。
    • Zipkin 负责收集、存储和可视化这些数据。

2.3 配置示例

Maven 依赖
xml 复制代码
<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
配置文件
yaml 复制代码
spring:
  zipkin:
    base-url: http://localhost:9411
  sleuth:
    sampler:
      probability: 1.0

3. Sleuth 和 Zipkin 的关系

功能 Spring Cloud Sleuth Zipkin
Trace ID 和 Span ID 生成 负责生成和传播 Trace ID 和 Span ID 不负责生成,只接收和存储这些数据
日志增强 在日志中添加 Trace ID 和 Span ID 不负责日志增强
数据存储 不存储数据 负责存储追踪数据
数据可视化 无可视化界面 提供图形化界面,展示链路追踪数据
适用场景 应用内部的链路追踪和日志增强 集中化管理和分析多个服务的链路追踪数据

4. 总结

  • Spring Cloud Sleuth

    • 负责生成和传播追踪信息,增强日志。
    • 适合在应用内部使用,帮助开发者通过日志分析链路信息。
  • Zipkin

    • 负责收集、存储和可视化追踪数据。
    • 提供集中化管理和性能分析功能。
  • 两者结合

    • Sleuth 和 Zipkin 是互补的工具,结合使用可以实现完整的分布式链路追踪解决方案。
相关推荐
无心水28 分钟前
【分布式利器:腾讯TSF】10、TSF故障排查与架构评审实战:Java架构师从救火到防火的生产哲学
java·人工智能·分布式·架构·限流·分布式利器·腾讯tsf
小北方城市网12 小时前
分布式锁实战指南:从选型到落地,避开 90% 的坑
java·数据库·redis·分布式·python·缓存
范桂飓14 小时前
大模型分布式训练框架 Megatron-LM
人工智能·分布式
oMcLin17 小时前
如何在Debian 11上通过配置MySQL 8.0的分布式架构,提升跨区域数据同步的效率与延迟?
分布式·mysql·debian
一条咸鱼_SaltyFish18 小时前
[Day15] 若依框架二次开发改造记录:定制化之旅 contract-security-ruoyi
java·大数据·经验分享·分布式·微服务·架构·ai编程
IT 行者20 小时前
Spring Security 7 OAuth2 授权码分布式存储之Redis存储方案
redis·分布式·spring
潇凝子潇20 小时前
kafka之监控告警
分布式·kafka
Light6021 小时前
从“报告”到“能力”——构建智能化、可审计的数据治理闭环——领码 SPARK 数据质量平台白皮书
大数据·分布式·spark
maozexijr21 小时前
RabbitMQ Exchange Headers类型存在的意义?
分布式·rabbitmq
还在忙碌的吴小二21 小时前
XXL-SSO 分布式单点登录框架
分布式