9.25 深度学习7

1.图像分类概述

定义:将不同的图像划分到不同的类别标签,以实现最小的分类误差。

分类层次:分为通用的多类别图像分类、子类细粒度图像分类和实例级图片分类三个层次。

2.模型评估核心指标:精确率与召回率

混淆矩阵:包含TP(真正例)、FP(假正例)、TN(真反例)和FN(假反例)四个基本元素。

精确率(Accuracy):模型识别正确的个数与样本总个数的比值,是常用的分类性能指标。

准确率(Precision):在模型识别为正类的样本中,真正为正类的样本所占的比例。

召回率(Recall):模型正确识别出为正类的样本数量占总的正类样本数量的比值。

精确率与召回率存在权衡关系,互为竞争性指标。

3.F1-score和ROC/PR曲线

F1-score通过调和平均数融合精确率和召回率,提供一个综合性的模型性能指标。

PR曲线(Precision-Recall Curve)将横坐标设为召回率,纵坐标设为精确率,用于评估模型在各类召回水平下的表现。

ROC曲线(Receiver Operating Characteristic Curve),使用正例与负例比例(FPR)衡量,不受样本不均衡的影响,对于数据分布极度不均衡的场景更具优势。

4.多分类评估

对于k分类问题,混淆矩阵为k*k的矩阵,主对角线的元素之和为正确分类的样本数,其余元素之和为错误分类的样本数,对角线的值越大,分类器准确率越高。

5.模型参数与超少样本数据处理

模型深度: 指的是从输入到输出路径上的卷积层和全连接层的数量总和(最长路径的卷积层+全连接层数量),不包含池化层和激活函数。

模型宽度: 指的是网络中每一层的特征通道数量。以卷积网络层计算,如LeNet网络的C1有6个通道,C3有16个通道。

样本量过少: 当面对如工业质检、医疗诊断这类样本稀缺的场景时,可采用预训练模型迁移学习或数据增强策略来提升模型性能。

解决方案

迁移学习:使用预训练模型,如利用ImageNet数据集进行预训练,可加速模型收敛。

有监督方法:包括平移、翻转、亮度调整、对比度调整、裁剪、缩放等。

无监督方法:通过GAN网络生成所需样本,然后再进行训练。

相关推荐
Drgfd20 小时前
真智能 vs 伪智能:天选 WE H7 Lite 用 AI 人脸识别 + 呼吸灯带,重新定义智能化充电桩
人工智能·智能充电桩·家用充电桩·充电桩推荐
萤丰信息20 小时前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
盖雅工场20 小时前
排班+成本双管控,餐饮零售精细化运营破局
人工智能·零售餐饮·ai智能排班
神策数据20 小时前
打造 AI Growth Team: 以 Data + AI 重塑品牌零售增长范式
人工智能·零售
2501_9413331020 小时前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
逐梦苍穹20 小时前
速通DeepSeek论文mHC:给大模型装上物理阀门的架构革命
人工智能·deepseek·mhc
运维小欣21 小时前
Agentic AI 与 Agentic Ops 驱动,智能运维迈向新高度
运维·人工智能
Honmaple21 小时前
OpenClaw 迁移指南:如何把 AI 助手搬到新电脑
人工智能
wenzhangli721 小时前
Ooder A2UI 第一性原理出发 深度解析核心逻辑
人工智能·开源
网络安全研究所21 小时前
AI安全提示词注入攻击如何操控你的智能助手?
人工智能·安全