使用ffmpeg8.0的whisper模块语音识别

2025年9月ffmpeg8.0发布,这个版本将whisper.cpp内置到了audio filter。最新版本的ffmpeg默认支持whisper模块。

以下是模块的可选参数,参数之间用:分隔,用=设置值。例如 :vad_threshold=0.3

model: The file path of the downloaded whisper.cpp model (mandatory).
language: The language to use for transcription ('auto' for auto-detect). Default value: "auto"
queue: The maximum size that will be queued into the filter before processing the audio with whisper. Using a small value the audio stream will be processed more often, but the transcription quality will be lower and the required processing power will be higher. Using a large value (e.g. 10-20s) will produce more accurate results using less CPU (as using the whisper-cli tool), but the transcription latency will be higher, thus not useful to process real-time streams. Consider using the vad_model option associated with a large queue value. Default value: "3"
use_gpu: If the GPU support should be enabled. Default value: "true"
gpu_device: The GPU device index to use. Default value: "0"
destination: If set, the transcription output will be sent to the specified file or URL (use one of the FFmpeg AVIO protocols); otherwise, the output will be logged as info messages. The output will also be set in the "lavfi.whisper.text" frame metadata. If the destination is a file and it already exists, it will be overwritten.
format: The destination format string; it could be "text" (only the transcribed text will be sent to the destination), "srt" (subtitle format) or "json". Default value: "text"
vad_model: Path to the VAD model file. If set, the filter will load an additional voice activity detection module (https://github.com/snakers4/silero-vad) that will be used to fragment the audio queue; use this option setting a valid path obtained from the whisper.cpp repository (e.g. "../whisper.cpp/models/ggml-silero-v5.1.2.bin") and increase the queue parameter to a higher value (e.g. 20).
vad_threshold: The VAD threshold to use. Default value: "0.5"
vad_min_speech_duration: The minimum VAD speaking duration. Default value: "0.1"
**vad_min_silence_duration:**The minimum VAD silence duration. Default value: "0.5"

复制代码
举例说明使用方法:
ffmpeg -i input.mp4 -vn -af "whisper=model=../whisper.cpp/models/ggml-base.en.bin\
:language=en\
:queue=3\
:destination=output.srt\
:format=srt" -f null -

ffmpeg官方网站文档:https://ayosec.github.io/ffmpeg-filters-docs/8.0/Filters/Audio/whisper.html

再举一个例子:

ffmpeg -i H:\a.mp4 -vn -af "whisper=model=./models/ggml-medium.bin :language=auto :queue=3 :destination=./output.srt :format=srt :vad_model=./models/ggml-silero-v5.1.2.bin :vad_threshold=0.3" -f null -

但是经过测试,都使用ggml-medium.bin模型的情况下,识别效果不如先使用ffmpeg提取音频生成mp3文件,再使用whisper.cpp的whisper-cli.exe生成字幕文件。方法如下:

ffmpeg -i /path/to/video.mp4 -af aresample=async=1 -ar 16000 -ac 1 -c:a pcm_s16le -loglevel fatal /path/to/audio.mp3

./whisper-cli.exe -l auto -osrt --vad --vad-threshold 0.3 --vad-model .\models\ggml-silero-v5.1.2.bin -m .\models\ggml-medium.bin H:\a.mp3

推荐使用mp3格式 ,mp3格式的生成的文字有标点符号,wav格式的没有标点符号。

相关推荐
andwhataboutit?1 分钟前
pytorch-CycleGAN-and-pix2pix学习
人工智能·pytorch·学习
渡我白衣5 分钟前
计算机组成原理(7):定点数的编码表示
汇编·人工智能·嵌入式硬件·网络协议·机器学习·硬件工程
vv_5015 分钟前
大模型 langchain-组件学习(中)
人工智能·学习·langchain·大模型
╭⌒若隐_RowYet——大数据6 分钟前
AI Agent(智能体)简介
人工智能·ai·agent
Evand J11 分钟前
【课题推荐】基于视觉(像素坐标)与 IMU 的目标/自身运动估计(Visual-Inertial Odometry, VIO),课题介绍与算法示例
人工智能·算法·计算机视觉
麦麦大数据13 分钟前
F051-vue+flask企业债务舆情风险预测分析系统
前端·vue.js·人工智能·flask·知识图谱·企业信息·债务分析
haiyu_y15 分钟前
Day 45 预训练模型
人工智能·python·深度学习
【建模先锋】18 分钟前
基于CNN-SENet+SHAP分析的回归预测模型!
人工智能·python·回归·cnn·回归预测·特征可视化·shap 可视化分析
Robot侠21 分钟前
视觉语言导航从入门到精通(四)
人工智能·深度学习·transformer·rag·视觉语言导航·vln
思迈特Smartbi24 分钟前
思迈特软件斩获鲲鹏应用创新大赛(华南赛区) “最佳原生创新奖”
人工智能·ai·数据分析·bi·商业智能