基于PyTorch的CIFAR-10图像分类项目总结(2)

  1. 添加每个类别准确率计算

在整体准确率计算后新增功能:

初始化每个类别的正确预测计数器和总样本计数器

遍历测试集统计每个类别的预测结果

计算并打印10个类别的单独准确率

修正了原代码中的语法错误

  1. 增加全局平均池化网络架构

在CNNNet类后新增Net类:

使用全局平均池化替代全连接层

减少参数数量,防止过拟合

保持相同的卷积层结构但修改全连接部分

添加参数总数统计和打印

3.思考:卷积层的通道为什么会增加

注意:在输入图像到达卷积层后原本的RGB三通道与卷积后的超参数不相关

个人感觉卷积核就像高维度想低维度的收缩核心

关于卷积内部运行印象

相关推荐
bin915321 小时前
当AI开始‘映射‘用户数据:初级Python开发者的创意‘高阶函数‘如何避免被‘化简‘?—— 老码农的函数式幽默
开发语言·人工智能·python·工具·ai工具
飞哥数智坊1 天前
一文看懂 Claude Skills:让你的 AI 按规矩高效干活
人工智能·claude
IT_陈寒1 天前
5个Java 21新特性实战技巧,让你的代码性能飙升200%!
前端·人工智能·后端
dlraba8021 天前
YOLOv3:目标检测领域的经典之作
人工智能·yolo·目标检测
科新数智1 天前
破解商家客服困局:真人工AI回复如何成为转型核心
人工智能·#agent #智能体
szxinmai主板定制专家1 天前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
ygyqinghuan1 天前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交1 天前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
newxtc1 天前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen1 天前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能