PyTorch 实战:CIFAR-10 图像分类与网络优化

一、引言

图像分类是计算机视觉领域的基础任务,CIFAR-10 数据集包含 10 类常见物体的图像,是入门图像分类的经典数据集。本文将使用 PyTorch 框架,从数据加载与预处理开始,构建卷积神经网络(CNN)进行 CIFAR-10 图像分类,并对网络进行优化,提升分类性能。

二、数据准备与预处理

(一)数据集介绍

CIFAR-10 数据集有 60000 张 32×32 彩色图像,分为 10 类,每类 6000 张。其中 50000 张用于训练,10000 张用于测试。

(二)代码实现

首先导入必要的库,然后定义数据转换操作,将图像转换为张量并进行标准化,接着加载训练集和测试集,并使用 DataLoader 来批量加载数据。

为了直观查看数据,我们还可以定义一个函数来显示图像:

三、构建基础 CNN 模型

(一)模型结构

我们构建一个包含两层卷积、两层池化和两层全连接的 CNN 模型。卷积层用于提取图像特征,池化层用于降低特征维度,全连接层用于分类。

(二)模型训练

使用随机梯度下降(SGD)优化器和交叉熵损失函数来训练模型,训练 10 个 epoch。

(三)模型评估

在测试集上评估模型的性能,包括总体准确率和各类别的准确率。

四、网络优化

(一)优化思路

为了减少模型参数数量,同时保证一定的性能,我们引入全局平均池化(GAP)层。全局平均池化可以替代全连接层,减少参数数量,还能增强模型的泛化能力。

(二)优化后模型

三)优化后模型训练与评估

同样使用 SGD 优化器和交叉熵损失函数训练优化后的模型,然后在测试集上评估性能,对比优化前后的效果。

五、总结

本文从 CIFAR-10 数据集的加载与预处理开始,构建了基础的 CNN 模型进行图像分类,然后通过引入全局平均池化层对网络进行优化,减少了模型参数数量。

相关推荐
王彦臻2 小时前
PyTorch 中模型测试与全局平均池化的应用总结
人工智能·pytorch·python
蒜鸟~蒜鸟~4 小时前
PyTorch 神经网络工具箱全解析:从核心组件到模型实战
pytorch·神经网络
Blossom.1188 小时前
AI“点亮”萤火虫:边缘机器学习让微光成像走进4K时代
人工智能·pytorch·python·深度学习·数码相机·opencv·机器学习
jie*11 小时前
小杰深度学习(two)——全连接与链式求导
图像处理·人工智能·pytorch·python·深度学习·分类·回归
小毕超1 天前
基于 PyTorch 完全从零手搓 GPT 混合专家 (MOE) 对话模型
pytorch·transformer·moe
ygyqinghuan1 天前
Pytorch 数据处理
人工智能·pytorch·python
nju_spy1 天前
南京大学 LLM开发基础(二)大语言模型解析 -- 基于HF LlaMA实现的讲解
人工智能·pytorch·深度学习·大模型·多头注意力·rmsnorm·位置掩码
Y200309161 天前
PyTorch 实现 CIFAR10 图像分类知识点总结
人工智能·pytorch·分类
姜—姜1 天前
使用 PyTorch 框架对 CIFAR - 10 数据集进行CNN分类
pytorch·分类·cnn