PyTorch 实战:CIFAR-10 图像分类与网络优化

一、引言

图像分类是计算机视觉领域的基础任务,CIFAR-10 数据集包含 10 类常见物体的图像,是入门图像分类的经典数据集。本文将使用 PyTorch 框架,从数据加载与预处理开始,构建卷积神经网络(CNN)进行 CIFAR-10 图像分类,并对网络进行优化,提升分类性能。

二、数据准备与预处理

(一)数据集介绍

CIFAR-10 数据集有 60000 张 32×32 彩色图像,分为 10 类,每类 6000 张。其中 50000 张用于训练,10000 张用于测试。

(二)代码实现

首先导入必要的库,然后定义数据转换操作,将图像转换为张量并进行标准化,接着加载训练集和测试集,并使用 DataLoader 来批量加载数据。

为了直观查看数据,我们还可以定义一个函数来显示图像:

三、构建基础 CNN 模型

(一)模型结构

我们构建一个包含两层卷积、两层池化和两层全连接的 CNN 模型。卷积层用于提取图像特征,池化层用于降低特征维度,全连接层用于分类。

(二)模型训练

使用随机梯度下降(SGD)优化器和交叉熵损失函数来训练模型,训练 10 个 epoch。

(三)模型评估

在测试集上评估模型的性能,包括总体准确率和各类别的准确率。

四、网络优化

(一)优化思路

为了减少模型参数数量,同时保证一定的性能,我们引入全局平均池化(GAP)层。全局平均池化可以替代全连接层,减少参数数量,还能增强模型的泛化能力。

(二)优化后模型

三)优化后模型训练与评估

同样使用 SGD 优化器和交叉熵损失函数训练优化后的模型,然后在测试集上评估性能,对比优化前后的效果。

五、总结

本文从 CIFAR-10 数据集的加载与预处理开始,构建了基础的 CNN 模型进行图像分类,然后通过引入全局平均池化层对网络进行优化,减少了模型参数数量。

相关推荐
hacker7079 小时前
openGauss 在K12教育场景的数据处理测评:CASE WHEN 实现高效分类
人工智能·分类·数据挖掘
大数据魔法师1 天前
分类与回归算法(六)- 集成学习(随机森林、梯度提升决策树、Stacking分类)相关理论
分类·回归·集成学习
AI即插即用1 天前
即插即用系列 | 2025 MambaNeXt-YOLO 炸裂登场!YOLO 激吻 Mamba,打造实时检测新霸主
人工智能·pytorch·深度学习·yolo·目标检测·计算机视觉·视觉检测
大数据魔法师1 天前
分类与回归算法(五)- 决策树分类
决策树·分类·回归
忘却的旋律dw1 天前
使用LLM模型的tokenizer报错AttributeError: ‘dict‘ object has no attribute ‘model_type‘
人工智能·pytorch·python
happy egg1 天前
随机森林分类VS回归
随机森林·分类·回归
studytosky1 天前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib
7***37451 天前
DeepSeek在文本分类中的多标签学习
学习·分类·数据挖掘
小女孩真可爱2 天前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
Teacher.chenchong2 天前
GEE云端林业遥感:贯通森林分类、森林砍伐与退化监测、火灾评估、森林扰动监测、森林关键生理参数(树高/生物量/碳储量)反演等
人工智能·分类·数据挖掘