手势检测(充满科技感)

mediapipe库

Mediapipe是google的一个开源项目,可以提供开源的、跨平台的常用机器学习(machine learning)方案。Mediapipe实际上是一个集成的机器学习视觉算法的工具库,包含了人脸检测、人脸关键点、手势识别、头像分割和姿态识别等各种模型。我们可以直接使用pip进行安装就好。

代码部分

初始化

复制代码
import cv2
import mediapipe as mp

mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
    static_image_mode=False,
    max_num_hands=2,
    min_detection_confidence=0.75,
    min_tracking_confidence=0.75)

mp.solutions.drawing_utils是一个绘图模块,将识别到的手部关键点信息绘制道cv2图像中,mp.solutions.drawing_style定义了绘制的风格。

mp.solutions.hands是mediapipe中的手部识别模块,可以通过它调用手部识别的api,然后通过调用mp_hands.Hands初始化手部识别类。

mp_hands.Hands中的参数:

1)static_image_mode=True适用于静态图片的手势识别,Flase适用于视频等动态识别,比较明显的区别是,若识别的手的数量超过了最大值,

True时识别的手会在多个手之间不停闪烁,而False时,超出的手不会识别,系统会自动跟踪之前已经识别过的手。默认值为False;

2)max_num_hands用于指定识别手的最大数量。默认值为2;

3)min_detection_confidence 表示最小检测信度,取值为[0.0,1.0]这个值约小越容易识别出手,用时越短,但是识别的准确度就越差。越大识别的越精准,

但是响应的时间也会增加。默认值为0.5;

4)min_tracking_confience 表示最小的追踪可信度,越大手部追踪的越准确,相应的响应时间也就越长。默认值为0.5。

开始检测

复制代码
cap = cv2.VideoCapture(0)
while True:
    flag = 0
    ret, frame = cap.read()
    h,w=frame.shape[:2]
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    # 因为摄像头是镜像的,所以将摄像头水平翻转
    # 不是镜像的可以不翻转
    frame = cv2.flip(frame, 1)
    results = hands.process(frame)
    frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
    #    if results.multi_handedness:
    #        for hand_label in results.multi_handedness:
    #            print(hand_label)
    if results.multi_hand_landmarks:
        for hand_landmarks in results.multi_hand_landmarks:
            # print('hand_landmarks:', hand_landmarks)
            # 计算关键点的距离,用于判断手指是否伸直
            for i in range(len(hand_landmarks.landmark)):
                x = hand_landmarks.landmark[i].x
                y = hand_landmarks.landmark[i].y
                z = hand_landmarks.landmark[i].z
                # print(x,y,z)
                cv2.putText(frame, str(i), (int(x*w),int(y*h)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0),2)
            # 关键点可视化
            mp_drawing.draw_landmarks(frame,
                                      hand_landmarks,
                                      mp_hands.HAND_CONNECTIONS)

    cv2.imshow('MediaPipe Hands', frame)
    if cv2.waitKey(1) & 0xFF == 27:
        break
cap.release()
cv2.destroyAllWindows()

重要部分就是results = hands.process(frame),这里可以获得关键点

results.multi_hand_landmarks判断是否检测到手。

for hand_landmarks in results.multi_hand_landmarks:对每一个手进行检测。

然后对其中每个点进行循环,使用mp_drawing.draw_landmarks(frame,

hand_landmarks,

mp_hands.HAND_CONNECTIONS)

进行画出,并且在画的时候找到了那个坐标,并写出来了那个位置的索引(没啥用)

效果展示

相关推荐
春末的南方城市3 小时前
苏大团队联合阿丘科技发表异常生成新方法:创新双分支训练法,同步攻克异常图像生成、分割及下游模型性能提升难题。
人工智能·科技·深度学习·计算机视觉·aigc
AIwenIPgeolocation3 小时前
华北水利水电大学信息工程学院赴郑州埃文科技有限公司交流
科技
FIN66688 小时前
塑料餐饮具头部优势,新天力市占率稳步提升
科技·搜索引擎·产品运营·创业创新·制造
FIN66688 小时前
新天力科技IPO进行时:技术引领未来,创新驱动发展
科技·安全·搜索引擎·产品运营·创业创新·制造
eqwaak012 小时前
科技信息差(9.29)
开发语言·科技·学习·算法
JSBSK248614 小时前
广州途道信息科技有限公司企业白皮书:创新驱动增长,责任铸就品牌
科技
8K超高清15 小时前
汇世界迎全运 广州国际社区运动嘉年华举行,BOSMA博冠现场展示并分享与科技全运的故事
运维·服务器·网络·数据库·人工智能·科技
盈电智控16 小时前
科技护航童心:物联网助力科学护眼与智能哄娃新方式
科技·物联网
双翌视觉16 小时前
机器视觉的双相机对位模切应用
科技·数码相机·机器视觉