显存和算力的关系

我们在模型的使用过程中,经常会发现一些模型显存够用但是算力跟不上,这时就会出现有关显存和算力之间的关系,尤其是有些模型会出现不吃显存但是很吃算力的情况,需要具体情况具体进行分析。

1、显存和算力的关系
概念 通俗理解 决定因素
显存(Memory) GPU 上存数据的"仓库" 模型参数大小、KV cache、大批量输入、激活值等
算力(Compute) GPU/CPU 执行矩阵乘法的"发动机" AICore/SM 数量、主频、算力峰值(TFLOPS)

显存不是抽象的"容量",而是由独立的存储芯片提供的,焊在 GPU 板卡上,常见的显存芯片是HBM和GDDR:

  • GDDR6/GDDR6X:常见于消费级显卡(RTX 系列),容量一般 8GB~24GB
  • HBM2e/HBM3:用于数据中心级(A100、H100、Ascend 910B),容量 40GB~192GB,带宽更高

决定显存大小的物理因素:

  • 显存芯片颗数与容量(比如 8 颗 × 8GB = 64GB)
  • 显存总线宽度与带宽(影响数据读写速度)
  • GPU 控制器支持的最大寻址容量

A100(80GB)用的是 HBM2e,显存芯片总容量物理就是 80GB,没法通过软件"变大"。如果模型 + KV cache 超过了 80GB,就只能拆分(分布式)或换更大显存的卡。

算力的载体是GPU 核心(SM/AI Core),算力来自 GPU 内部的计算单元(CUDA Core、Tensor Core 或 NPU AICore)。它们负责执行矩阵乘法、向量加法等浮点操作。

算力大小的主要物理决定因素:

硬件指标 含义 对算力的影响
核心数量 (SM / AICore 数量) 并行计算单元多少 决定并行能力
每核心算力 (FLOPs per core) 单核每秒能算多少次浮点 决定单位核心性能
时钟频率 (MHz/GHz) 工作频率 频率越高,算力越强
数据类型支持 (FP32 / FP16 / BF16 / INT8) 不同精度对应不同吞吐 混合精度可大幅提升算力

类似CPU的计算原则,算力 = 核心数 × 每核每周期操作数 × 主频 × (是否使用 Tensor Core 等加速单元)

2、硬件是显存和算力的根本制约
限制对象 来自硬件的物理约束
显存容量 显存芯片数量、单颗容量、控制器寻址范围
显存带宽 显存接口位宽、时钟频率
算力上限 SM/AICore 总数、主频、工艺制程、功耗散热能力
数据精度支持 硬件是否支持 FP16/BF16/INT8 等指令集

软件无法"创造"更多显存或算力,只能更高效地利用现有资源(比如通过量化节省显存,或通过并行提升利用率)。总的来说1、显存是容量限制,由 GPU 上的存储芯片决定,决定你能"装下"什么。2、算力是计算能力,由核心数量和频率决定,决定你能"算得多快"。

3、HBM

HBM(High Bandwidth Memory) 是一种专为高性能计算(HPC、AI、大模型)设计的显存技术,它最大的特点就是:

  • 带宽极高(是 GDDR6 的 3~5 倍)
  • 封装紧凑(垂直叠层 TSV 封装,距离 GPU 核心极近)
  • 功耗更低(同样带宽下耗电远小于 GDDR)
    简单说:GDDR 就像是「在主板上插内存条」;HBM 就像是「把内存直接焊在 CPU 上」,离核心更近、传得更快。
相关推荐
数智顾问3 小时前
Transformer模型:深度解析自然语言处理的革命性架构——从注意力机制到基础架构拆解
人工智能·rnn·深度学习
春末的南方城市4 小时前
港大和字节携手打造WorldWeaver:以统一建模方案整合感知条件,为长视频生成领域带来质量与一致性双重飞跃。
人工智能·深度学习·机器学习·计算机视觉·aigc·音视频
gladiator+6 小时前
深度学习--行人重识别技术(超分辨率网络+ResNet101)附数据集
人工智能·深度学习
努力还债的学术吗喽6 小时前
PyTorch nn.Linear 终极详解:从零理解线性层的一切(含可视化+完整代码)
人工智能·pytorch·python·深度学习·基础组件·线性层·nn.linear
无风听海7 小时前
神经网络之sigmoid激活函数
人工智能·深度学习·神经网络
wan5555cn7 小时前
AI视频生成技术:从想象到现实的视觉革命
人工智能·笔记·深度学习·算法·音视频
极客代码7 小时前
第五篇:后端优化——位姿图的灵魂--从图优化到滑动窗口的联合状态估计
python·深度学习·计算机视觉·视觉里程计·slam·回环检测·地图构建
charieli-fh7 小时前
LoRA 高效微调大语言模型全流程:从原理、实践到参数调优
人工智能·深度学习·大模型·大语言模型
星川皆无恙8 小时前
知识图谱之深度学习:基于 BERT+LSTM+CRF 驱动深度学习识别模型医疗知识图谱问答可视化分析系统
大数据·人工智能·深度学习·bert·知识图谱