RAG Day05 混合检索

上周学习了索引构建,本周开始学习检索相关。

索引是建立向量数据库时为这个信息提供一个标识,这种标识一般比较短,并且包含这块信息的主干内容,为将来快速检索打下了基础。

检索是希望更快的匹配问题语义和向量数据库的语义,那么语义如何与向量数据库对应也是快速检索的前提条件之一。

语义在向量化的过程中大致分为两类:稀疏向量和密集向量。

稀疏向量指的就是TF-IDF相关技术。他通过一个公式精确的将词频和词对应了起来,给更高的词频分配了更稀疏的向量编码,这个技术的好处是可以精确检索对应相关词条,整个过程具有强的可解释性和更高的效率,缺点是直接忽略未登录词。

密集向量在单词和向量映射之间采用了深度学习模型,从语义本位的角度出发理论上来说,相似语义的向量距离会更近,不相似语义的向量距离会更远。他的优点是通过深度学习的理论无限接近了语义这个理想点,缺点是可解释性差,并且需要大数据和算力。

所谓混合检索就是稀疏检索和密集检索的加权。

利用二者的优势,更加理想化的接近了真实语义。

(代码设计了milvus,很难看懂,脑壳疼。)

学习内容来自Datawhale

还是很感谢开源精神,能写出这么一份高质量的教程也很不容易~

all-in-rag/docs/chapter4/11_hybrid_search.md at main · datawhalechina/all-in-rag · GitHub

相关推荐
kjkdd4 小时前
6.1 核心组件(Agent)
python·ai·语言模型·langchain·ai编程
渣渣苏8 小时前
Langchain实战快速入门
人工智能·python·langchain
小天呐9 小时前
01—langchain 架构
langchain
香芋Yu12 小时前
【LangChain1.0】第九篇 Agent 架构设计
langchain·agent·架构设计
kjkdd13 小时前
5. LangChain设计理念和发展历程
python·语言模型·langchain·ai编程
ASKED_20191 天前
Langchain学习笔记一 -基础模块以及架构概览
笔记·学习·langchain
zhengfei6111 天前
【AI平台】- 基于大模型的知识库与知识图谱智能体开发平台
vue.js·语言模型·langchain·知识图谱·多分类
玄同7651 天前
LangChain 1.0 模型接口:多厂商集成与统一调用
开发语言·人工智能·python·langchain·知识图谱·rag·智能体
Bruk.Liu1 天前
(LangChain实战12):LangChain中的新型Chain之create_sql_query_chain
数据库·人工智能·sql·langchain
爱吃羊的老虎1 天前
【大模型开发】学习笔记一:RAG & LangChain 实战核心笔记
人工智能·笔记·语言模型·langchain