碎片笔记|生成模型原理解读:AutoEncoder、GAN 与扩散模型图像生成机制

前言:本篇博客简要介绍不同生成模型架构的图像生成原理,主要包括AutoEncoder、GAN 和 Diffusion Models 三类。

目录

  • AutoEocoder(自编码器)
    • [VAE(Variational Autoencoder,变分自编码器)](#VAE(Variational Autoencoder,变分自编码器))
  • [GAN(Generative Adversarial Network,生成对抗网络)](#GAN(Generative Adversarial Network,生成对抗网络))
  • [Diffusion Model(扩散模型)](#Diffusion Model(扩散模型))
    • [Latent Diffusion Model(LDM,潜空间扩散模型)](#Latent Diffusion Model(LDM,潜空间扩散模型))

AutoEocoder(自编码器)

AutoEncoder主要用于图像重建任务,是典型的Encoder-Decoder架构。

生成原理:图像 x x x 首先经由 Encoder 编码成 l a t e n t latent latent,然后 l a t e n t latent latent送入Decoder得到重建图像。

VAE(Variational Autoencoder,变分自编码器)

VAE是AutoEncoder的变体,旨在提升AutoEncoder的图像生成能力,因此对于训练完毕的VAE,可以直接使用其Decoder生成图像。

生成原理:随机生成噪声向量 l a t e n t latent latent 送入Decoder即可生成图像。


GAN(Generative Adversarial Network,生成对抗网络)

GAN(Generative Adversarial Network,生成对抗网络)是一种生成模型,由 生成器(Generator) 和 判别器(Discriminator) 构成,生成器负责生成图像,判别器负责区分真图像与生成图像。训练过程中,判别器对生成图像与真实图像进行判别,生成器根据判别结果不断优化,从而生成逼真的图像。两者通过对抗训练提升生成效果。

生成原理:随机生成噪声向量 l a t e n t latent latent(通常服从标准正态分布)作为输入送入生成器,生成器输出图像。


Diffusion Model(扩散模型)

Diffusion Model(扩散模型)是一种基于逐步去噪生成图像的概率模型,通过学习数据分布的反向扩散过程来生成图像。

生成原理:首先从标准正态噪声图像开始,经过训练好的去噪网络(通常是 U-Net 结构)逐步迭代去噪,最终得到高质量图像。生成过程可以视作"从纯噪声到图像"的逐步逆扩散过程。

Latent Diffusion Model(LDM,潜空间扩散模型)

LDM 是 Diffusion Model 的一种变体,将扩散过程放在 潜在空间(latent space) 而非原始像素空间,从而大幅降低计算开销,同时保持生成图像质量。

训练过程:原始图像先通过 AutoEncoder 的 Encoder 映射到潜在向量空间,然后在潜在空间中进行逐步扩散/去噪训练,学习潜在向量的分布。有些训练会将重建的潜向量通过 Decoder 映射回图像空间,计算像素级重建损失,但核心训练是潜在空间去噪。

生成原理:生成图像时,先在潜在空间中选取随机噪声向量开始迭代去噪,得到潜在向量(和随机噪声的维度相同),再通过 Decoder 映射回像素空间得到最终图像。

特点:相比像素空间扩散,LDM 计算更高效,同时可以更容易地结合文本、图像等条件生成图像。

根据生成任务的类型,DM 提供两种不同的输入方式:

模式 输入 随机噪声 条件 Encoder Decoder
Text-to-Image 文本 prompt 文本
Image-to-Image 参考图像 (+可选文本) √(加在潜向量上) 图像 / 文本
相关推荐
野生面壁者章北海32 分钟前
ICML2025|基于Logits的大语言模型端到端文本水印方法
人工智能·语言模型·自然语言处理
说私域35 分钟前
开源AI智能名片链动2+1模式S2B2C商城小程序:分享经济时代的技术赋能与模式创新
人工智能·小程序·开源
HaiLang_IT1 小时前
基于深度学习的磁共振图像膝关节损伤多标签识别系统研究
人工智能·深度学习
月下倩影时1 小时前
视觉学习——卷积与神经网络:从原理到应用(量大管饱)
人工智能·神经网络·学习
思绪漂移1 小时前
CodeBuddy AI IDE:全栈AI开发平台实战
ide·人工智能·ai code
长空任鸟飞_阿康1 小时前
AI 多模态全栈应用项目描述
前端·vue.js·人工智能·node.js·语音识别
Mintopia1 小时前
🌐 实时协同 AIGC:多人在线 Web 创作的技术架构设计
前端·人工智能·trae
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2025-11-14
人工智能·经验分享·搜索引擎·产品运营
Mintopia1 小时前
🔥 “Solo Coding”的近期热度解析(截至 2025 年末)
前端·人工智能·trae
pen-ai2 小时前
【高级机器学习】 10. 领域适应与迁移学习
人工智能·机器学习·迁移学习