- 🍨 本文为 🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者: K同学啊
一、数据预处理
本次将加入Word2vec使用PyTorch实现中文文本分类,Word2Vec则是其中的一种词嵌入方去,是一种用于生成词向量的浅层神经网络模型,由Tomas Mikolov及其团队于2013年提出。 Word2Vec通过学习大量文本数据,将每个单词表示为一个连续的向量,这些向量可以捕捉单词之间的语义和句法关系。数据示例如下:

import torch
from torch import nn
import torchvision
from torchvision import transforms,datasets
import os,PIL,pathlib,warnings
warnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available else "cpu")
import pandas as pd
# CSV 格式通常为 无表头(header=None),以制表符(sep='\t')分隔
train_data = pd.read_csv('./data/train.csv',sep='\t',header=None)
# 构造数据集迭代器
def custom_data_iter(texts,labels):
for x,y in zip(texts,labels):
yield x,y
train_iter = custom_data_iter(train_data[0].values[:],train_data[1].values[:])
x = train_data[0].values[:]
y = train_data[1].values[:]
import jieba
input_x = []
for line in x:
input_x.append(jieba.lcut(line))
# 添加自定义停用词
stopwords_list = [",","。","\n","\u3000"," ",":","!","?","..."] # \u3000 是 Unicode 编码中的全角空格(也称为 "全角空白符"),是中文排版中常用的空格形式。
def remove_stopwords(ls): # 去除停用词
return [word for word in ls if word not in stopwords_list]
result_stop=[remove_stopwords(x) for x in input_x if remove_stopwords(x)]
from gensim.models.word2vec import Word2Vec # 与from gensim.models import Word2Vec 等价
import numpy as np
# 训练 Word2Vec 浅层神经网络模型
w2v = Word2Vec(vector_size=100, #是指特征向量的维度,默认为100。
min_count=3) #可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5。
w2v.build_vocab(result_stop)
w2v.train(result_stop,
total_examples=w2v.corpus_count,
epochs=20)
def average_vec(text):
vec = np.zeros(100).reshape((1,100))
for word in text:
try:
vec += w2v.wv[word].reshape((1,100))
except KeyError:
continue
return vec
# 将词向量保存为 Ndarray
x_vec = np.concatenate([average_vec(z) for z in result_stop])
# 保存Word2Vec模型及词向量
w2v.save('./data/w2v_model.pkl')
train_iter = custom_data_iter(x_vec,y)
label_name = list(set(train_data[1].values[:]))
text_pipeline = lambda x:average_vec(x)
label_pipeline = lambda x:label_name.index(x)
def collate_batch(batch):
label_list,text_list = [],[]
for(text,label) in batch:
label_list.append(label_pipeline(label))
processed_text = torch.tensor(text_pipeline(text),dtype=torch.float32)
text_list.append(processed_text)
label_list = torch.tensor(label_list,dtype=torch.int64)
text_list = torch.cat(text_list)
return text_list.to(device),label_list.to(device)
二、模型构建
from torch import nn
class TextClassificationModel(nn.Module):
def __init__(self,num_class):
super(TextClassificationModel,self).__init__()
self.fc = nn.Linear(100,num_class)
def forward(self,text):
return self.fc(text)
num_class = len(label_name)
model = TextClassificationModel(num_class).to(device)
import time
def train(dataloader):
model.train()
total_acc,train_loss,total_count = 0,0,0
log_interval = 50
start_time = time.time()
for idx,(text,label) in enumerate(dataloader):
predicted_label = model(text)
optimizer.zero_grad()
loss = criterion(predicted_label,label)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(),0.1) # 梯度裁剪
optimizer.step()
total_acc += (predicted_label.argmax(1)==label).sum().item()
train_loss += loss.item()*label.size(0)
total_count += label.size(0)
if idx % log_interval == 0 and idx > 0:
elapsed = time.time() - start_time
print('| epoch {:1d} | {:4d}/{:4d} batches '
'| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx, len(dataloader),
total_acc/total_count, train_loss/total_count))
total_acc, train_loss, total_count = 0, 0, 0
start_time = time.time()
def evaluate(dataloader):
model.eval()
total_acc,test_loss,total_count =0,0,0
with torch.no_grad():
for idx,(text,label) in enumerate(dataloader):
predicted_label = model(text)
loss = criterion(predicted_label,label)
total_acc += (predicted_label.argmax(1)==label).sum().item()
test_loss += loss.item()*label.size(0)
total_count += label.size(0)
return total_acc/total_count,test_loss/total_count
三、训练模型
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
from torch.utils.data import DataLoader
# 超参数
EPOCHS = 10
LR = 5
BATCH_SIZE = 64
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,1.0,gamma=0.1)
total_accu = None
train_iter = custom_data_iter(result_stop,train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)
num_train = int(len(train_dataset)*0.8)
split_train,split_valid = random_split(train_dataset,[num_train,len(train_dataset)-num_train])
train_dataloader = DataLoader(split_train,batch_size=BATCH_SIZE,shuffle=True,collate_fn=collate_batch)
valid_dataloader = DataLoader(split_valid,batch_size=BATCH_SIZE,shuffle=True,collate_fn=collate_batch)
for epoch in range(1,EPOCHS+1):
epoch_start_time = time.time()
train(train_dataloader)
val_acc,val_loss = evaluate(valid_dataloader)
lr = optimizer.state_dict()['param_groups'][0]['lr']
if total_accu is not None and total_accu > val_acc:
scheduler.step()
else:
total_accu = val_acc
print('-' * 69)
print('| epoch {:1d} | time: {:4.2f}s | '
'valid_acc {:4.3f} valid_loss {:4.3f} | lr {:4.6f}'.format(epoch,time.time()-epoch_start_time,val_acc,val_loss,lr))
print('-' * 69)

def predict(text):
with torch.no_grad():
text = torch.tensor(text_pipeline(text),dtype=torch.float32).to(device)
print(text.shape)
output = model(text)
return output.argmax(1).item()
ex_text_str = '随便播放一首歌'
print("该文本的类别是:%s"%label_name[predict(jieba.lcut(ex_text_str))])
