[Decision Tree] H(D) & IG & IGR

熵 (Entropy)

核心思想: 熵是信息论中用于衡量一个随机变量的**不确定性(uncertainty)纯度(purity)**的指标。一个数据集的熵越高,表示其内部的混乱程度或不确定性越大;熵越低,表示其内部越有序,纯度越高。

熵 衡量一个数据集 的纯度

直观理解:

  • 高熵(混乱) :如果你在一个袋子里,红球、绿球、蓝球各占三分之一,那么你随便摸出一个球,很难确定它是什么颜色,这个袋子的"不确定性"就很高,熵值就大。
  • 低熵(纯净) :如果袋子里99%都是红球,只有少量绿球,你随便摸出一个球,基本可以确定是红球,这个袋子的"不确定性"就低,熵值就小。
  • 零熵(完全纯净) :如果袋子里全是红球,你摸出的必然是红球,没有任何不确定性,熵值就是0。

IG (Information Gain)

信息增益: 在知道(已知)某个特征A 后,数据集不确定性减少了多少。 通俗来说,就是通过特征A对该数据集D进行划分后,能够带来多少"信息",从而使得D变得更"纯"了。

信息增益越大,说明使用该特征进行划分的D的效果越好。
直观理解:

  • 想象你有一堆混合的水果(苹果、香蕉、橙子),熵很高(很混乱)。
  • 现在你用"颜色"这个特征来划分:红色的放一堆,黄色的放一堆,绿色的放一堆。
  • 如果红色的那一堆主要是苹果,黄色的主要是香蕉,绿色的主要是青苹果,那么"颜色"这个特征就为你提供了很多信息,使得每一堆水果都变得更纯了。这种纯度的提升就是信息增益。
  • 如果按"形状"划分,结果每堆里还是苹果香蕉橙子混着,那"形状"提供的信息增益就小。

选择标准: (特征选取) 在ID3算法 中,决策树生成时,总是选择信息增益最大特征 作为当前节点的分裂特征

相关推荐
_dindong1 分钟前
【递归、回溯、搜索】专题六:记忆化搜索
数据结构·c++·笔记·学习·算法·深度优先·哈希算法
努力学算法的蒟蒻4 分钟前
day03(11.1)——leetcode面试经典150
java·算法·leetcode
yugi9878385 分钟前
C语言多进程创建和回收
linux·c语言·算法
极客数模18 分钟前
【浅析赛题,一等奖水平】思路模型数据相关资料!2025 年“大湾区杯”粤港澳金融数学建模竞赛B 题 稳定币的综合评价与发展分析~
大数据·算法·数学建模·金融·数据挖掘·图论·1024程序员节
深入理解GEE云计算31 分钟前
遥感生态指数(RSEI):理论发展、方法论争与实践进展
javascript·人工智能·算法·机器学习
superior tigre1 小时前
(huawei)最小栈
c++·华为·面试
m0_736927041 小时前
Spring Boot项目中如何实现接口幂等
java·开发语言·spring boot·后端·spring·面试·职场和发展
渡我白衣1 小时前
C++:链接的两难 —— ODR中的强与弱符号机制
开发语言·c++·人工智能·深度学习·网络协议·算法·机器学习
小龙报1 小时前
《算法通关指南:数据结构和算法篇 --- 顺序表相关算法题》--- 1.移动零,2.颜色分类
c语言·开发语言·数据结构·c++·算法·学习方法·visual studio
im_AMBER1 小时前
Leetcode 43
笔记·学习·算法·leetcode