flink keyby使用与总结 基础片段梳理

文章目录


提示:以下是本篇文章正文内容,下面案例可供参考

一、KeyBy的源码分析

总结:

保证key相同的一定进入到一个分区内,但是一个分区内可以有多key的数据;

是对数据进行实时的分区,不是上游发送给下游,而是将数据写入到对应的channel的缓存中,下游到上游实时拉取;

keyBy底层是new KeyedStream,然后将父DataStream包起来,并且传入keyBy的条件(keySelector);

最终会调用KeyGroupStreamPartitioner的selectChannel方法,将keyBy的条件的返回值传入到该方法中;

流程:

1.先计算key的HashCode值(有可能会是负的)

2将key的HashCode值进行特殊的hash处理,MathUtils.murmurHash(keyHash),一定返回正数,避免返回的数字为负

3.将返回特特殊的hash值模除以默认最大并行的,默认是128,得到keyGroupId

4.keyGroupId * parallelism(程序的并行度) / maxParallelism(默认最大并行),返回分区编号

注意:1.如果将自定义POJO当成key,必须重新hashcode方法,2.不能将数组当成keyBy的key

java 复制代码
public <K> KeyedStream<T, K> keyBy(KeySelector<T, K> key) {
        Preconditions.checkNotNull(key);
        return new KeyedStream<>(this, clean(key));
    }


public KeyedStream(
            DataStream<T> dataStream,
            KeySelector<T, KEY> keySelector,
            TypeInformation<KEY> keyType) {
        this(
                dataStream,
                new PartitionTransformation<>(
                        dataStream.getTransformation(),
                        new KeyGrouppublic KeyGroupStreamPartitioner(KeySelector<T, K> keySelector, int maxParallelism) {
        Preconditions.checkArgument(maxParallelism > 0, "Number of key-groups must be > 0!");
        this.keySelector = Preconditions.checkNotNull(keySelector);
        this.maxParallelism = maxParallelism;
    }

    public int getMaxParallelism() {
        return maxParallelism;
    }

    @Override
    public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
        K key;
        try {
            key = keySelector.getKey(record.getInstance().getValue());
        } catch (Exception e) {
            throw new RuntimeException(
                    "Could not extract key from " + record.getInstance().getValue(), e);
        }
        return KeyGroupRangeAssignment.assignKeyToParallelOperator(
                key, maxParallelism, numberOfChannels);
    }StreamPartitioner<>(
                                keySelector,
                                StreamGraphGenerator.DEFAULT_LOWER_BOUND_MAX_PARALLELISM)),
                                keySelector,
                                keyType);
    }

public static int assignKeyToParallelOperator(Object key, int maxParallelism, int parallelism) {
        Preconditions.checkNotNull(key, "Assigned key must not be null!");
        return computeOperatorIndexForKeyGroup(maxParallelism, parallelism, assignToKeyGroup(key, maxParallelism));
    }

    public static int assignToKeyGroup(Object key, int maxParallelism) {
        Preconditions.checkNotNull(key, "Assigned key must not be null!");
        return computeKeyGroupForKeyHash(key.hashCode(), maxParallelism);
    }
    
// 将key的HashCode值进行特殊的hash处理,MathUtils.murmurHash(keyHash),一定返回正数,避免返回的数字为负
public static int computeKeyGroupForKeyHash(int keyHash, int maxParallelism) {
        return MathUtils.murmurHash(keyHash) % maxParallelism;
    }
// keyGroupId * parallelism(程序的并行度) / maxParallelism(默认最大并行),返回分区编号
public static int computeKeyGroupForKeyHash(int keyHash, int maxParallelism) {
        return MathUtils.murmurHash(keyHash) % maxParallelism;
    }
相关推荐
Hello.Reader10 小时前
Flink 对接 Google Cloud Storage(GCS)读写、Checkpoint、插件安装与生产配置指南
大数据·flink
Hello.Reader11 小时前
Flink Kubernetes HA(高可用)实战原理、前置条件、配置项与数据保留机制
贪心算法·flink·kubernetes
浪子小院11 小时前
ModelEngine 智能体全流程开发实战:从 0 到 1 搭建多协作办公助手
大数据·人工智能
AEIC学术交流中心12 小时前
【快速EI检索 | ACM出版】2026年大数据与智能制造国际学术会议(BDIM 2026)
大数据·制造
wending-Y12 小时前
记录一次排查Flink一直重启的问题
大数据·flink
Hello.Reader12 小时前
Flink 对接 Azure Blob Storage / ADLS Gen2:wasb:// 与 abfs://(读写、Checkpoint、插件与认证)
flink·flask·azure
UI设计兰亭妙微12 小时前
医疗大数据平台电子病例界面设计
大数据·界面设计
初恋叫萱萱13 小时前
模型瘦身实战:用 `cann-model-compression-toolkit` 实现高效 INT8 量化
大数据
互联网科技看点13 小时前
孕期科学补铁,保障母婴健康-仁合益康蛋白琥珀酸铁口服溶液成为产妇优选方案
大数据
Dxy123931021613 小时前
深度解析 Elasticsearch:从倒排索引到 DSL 查询的实战突围
大数据·elasticsearch·搜索引擎