人工智能学习:逻辑回归

  1. 逻辑回归

用来解决分类问题。

1.1 Loss函数

对数似然损失

  1. 分类的评估方法

2.1 精确率与召回率

召回率:预测真实样本正确的概率。

2.1.1 混淆矩阵

  1. ROC曲线与AUG指标

图片出自13-ROC曲线与AUC指标_哔哩哔哩_bilibili

相关推荐
aigcapi3 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
上进小菜猪4 小时前
基于深度学习的河道垃圾检测系统设计(YOLOv8)
人工智能
上天夭4 小时前
模型训练篇
人工智能·深度学习·机器学习
小徐Chao努力4 小时前
【Langchain4j-Java AI开发】09-Agent智能体工作流
java·开发语言·人工智能
做cv的小昊4 小时前
计算机图形学:【Games101】学习笔记05——着色(插值、高级纹理映射)与几何(基本表示方法)
笔记·opencv·学习·计算机视觉·图形渲染·几何学
车载测试工程师4 小时前
CAPL学习-CAN相关函数-统计API函数
网络·网络协议·学习·capl·canoe
Blossom.1184 小时前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
Coder_Boy_4 小时前
SpringAI与LangChain4j的智能应用-(理论篇2)
人工智能·spring boot·langchain·springai
却道天凉_好个秋4 小时前
OpenCV(四十八):图像查找
人工智能·opencv·计算机视觉
Coder_Boy_5 小时前
SpringAI与LangChain4j的智能应用-(理论篇3)
java·人工智能·spring boot·langchain