Spark RDD详解 —— RDD特性、lineage、缓存、checkpoint、依赖关系

RDD(Resilient Distributed Datasets)弹性的分布式数据集,又称Spark core,它代表一个只读的、不可变、可分区,里面的元素可分布式并行计算的数据集。

RDD是一个很抽象的概念,不易于理解,但是要想学好Spark,必须要掌握RDD,熟悉它的编程模型,这是学习Spark其他组件的基础。笔者在这里从名字和几个重要的概念给大家一一解读:

Resilient(弹性的)

提到大数据必提分布式,而在大规模的分布式集群中,任何一台服务器随时都有可能出现故障,如果一个task任务所在的服务器出现故障,必然导致这个task执行失败。此时,RDD的"弹性的"特点可以使这个task在集群内进行迁移,从而保证整体任务对故障服务器的平稳过渡。对于整个任务而言,只需重跑某些失败的task即可,而无需完全重跑,大大提高性能

Distributed(分布式)

首先了解一下分区的概念,即数据根据一定的切分规则切分成一个个的子集。spark中分区划分规则默认是根据key进行哈希取模,切分后的数据子集可以独立运行在各个task中并且在各个集群服务器中并行执行。当然使用者也可以自定义分区规则,这个还是很有应用场景的,比如自定义分区打散某个key特别多的数据集以避免数据倾斜(数据倾斜是大数据领域常见问题也是调优重点,后续会单独讲解)

Datasets(数据集)

初学者很容易误解,认为RDD是存储数据的,毕竟从名字看来它是一个"弹性的分布式数据集"。但是,笔者强调,RDD并不存储数据,它只记录数据存储的位置。内部处理逻辑是通过使用者调用不同的Spark算子,一个RDD会转换为另一个RDD(这也体现了RDD只读不可变的特点,即一个RDD只能由另一个RDD转换而来),以transformation算子为例,RDD彼此之间会形成pipeline管道,无需等到上一个RDD所有数据处理逻辑执行完就可以立即交给下一个RDD进行处理,性能也得到了很大提升。但是RDD在进行transform时,不是每处理一条数据就交给下一个RDD,而是使用小批量的方式进行传递(这也是一个优化点)

lineage

既然Spark将RDD之间以pipeline的管道连接起来,如何避免在服务器出现故障后,重算这些数据呢?这些失败的RDD由哪来呢?这就牵涉到,Spark中的一个很重要的概念:Lineage即血统关系。它会记录RDD的元数据信息和依赖关系,当该RDD的部分分区数据丢失时,可以根据这些信息来重新运算和恢复丢失的分区数据。简单而言就是它会记录哪些RDD是怎么产生的、怎么"丢失"的等,然后Spark会根据lineage记录的信息,恢复丢失的数据子集,这也是保证Spark RDD弹性的关键点之一

Spark缓存和checkpoint

缓存(cache/persist)

cache和persist其实是RDD的两个API,并且cache底层调用的就是persist,区别之一就在于cache不能显示指定缓存方式,只能缓存在内存中,但是persist可以通过指定缓存方式,比如显示指定缓存在内存中、内存和磁盘并且序列化等。通过RDD的缓存,后续可以对此RDD或者是基于此RDD衍生出的其他的RDD处理中重用这些缓存的数据集

容错(checkpoint)

本质上是将RDD写入磁盘做检查点(通常是checkpoint到HDFS上,同时利用了hdfs的高可用、高可靠等特征)。上面提到了Spark lineage,但在实际的生产环境中,一个业务需求可能非常非常复杂,那么就可能会调用很多算子,产生了很多RDD,那么RDD之间的linage链条就会很长,一旦某个环节出现问题,容错的成本会非常高。此时,checkpoint的作用就体现出来了。使用者可以将重要的RDD checkpoint下来,出错后,只需从最近的checkpoint开始重新运算即可使用方式也很简单,指定checkpoint的地址[SparkContext.setCheckpointDir("checkpoint的地址")],然后调用RDD的checkpoint的方法即可。

checkpoint与cache/persist对比

  • 都是lazy操作,只有action算子触发后才会真正进行缓存或checkpoint操作(懒加载操作是Spark任务很重要的一个特性,不仅适用于Spark RDD还适用于Spark sql等组件)
  • cache只是缓存数据,但不改变lineage。通常存于内存,丢失数据可能性更大;
  • checkpoint会改变原有lineage,生成新的CheckpointRDD。通常存于hdfs,高可用且更可靠

RDD的依赖关系

Spark中使用DAG(有向无环图)来描述RDD之间的依赖关系,根据依赖关系的不同,划分为宽依赖和窄依赖

通过上图,可以很容易得出所谓宽依赖:多个子RDD的partition会依赖同一个parentRDD的partition;窄依赖:每个parentRDD的partition最多被子RDD的一个partition使用。这两个概念很重要,像宽依赖是划分stage的关键,并且一般都会伴有shuffle,而窄依赖之间其实就形成前文所述的pipeline管道进行处理数据。(图中的map、filter等是Spark提供的算子,具体含义大家可以自行到Spark官网了解,顺便感受一下scala函数式编程语言的强大)。

Spark任务以及stage等的具体划分,牵涉到源码,后续会单独讲解

最后笔者以RDD源码中的注释,阐述一下RDD的属性:

  1. 分区列表(数据块列表,只保存数据位置,不保存具体地址)
  2. 计算每个分片的函数(根据父RDD计算出子RDD)
  3. RDD的依赖列表
  4. RDD默认是存储于内存,但当内存不足时,会spill到disk(可通过设置StorageLevel来控制)
  5. 默认hash分区,可自定义分区器
  6. 每一个分片的优先计算位置(preferred locations)列表,比如HDFS的block的所在位置应该是优先计算的位置
    更多干货抢先看: Spark SQL如何选择join策略
相关推荐
野犬寒鸦3 小时前
从零起步学习Redis || 第十章:主从复制的实现流程与常见问题处理方案深层解析
java·服务器·数据库·redis·后端·缓存
梁辰兴3 小时前
计算机操作系统:进程同步
网络·缓存·操作系统·进程·进程同步·计算机操作系统
一个会的不多的人6 小时前
数字化转型:概念性名词浅谈(第七十二讲)
大数据·人工智能·制造·数字化转型
数据智能老司机6 小时前
在 Databricks 上的 Unity Catalog 数据治理——Unity Catalog 的内部机制
大数据·架构
weixin_445476688 小时前
从“用框架”到“控系统”———架构通用能力(模块边界、分层设计、缓存策略、事务一致性、分布式思维)
分布式·缓存·架构
gb42152878 小时前
elasticsearch索引多长时间刷新一次(智能刷新索引根据数据条数去更新)
大数据·elasticsearch·jenkins
IT毕设梦工厂9 小时前
大数据毕业设计选题推荐-基于大数据的人体生理指标管理数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata
数在表哥9 小时前
从数据沼泽到智能决策:数据驱动与AI融合的中台建设方法论与技术实践指南(四)
大数据·人工智能
爱思德学术9 小时前
中国计算机学会(CCF)推荐学术会议-C(数据库/数据挖掘/内容检索):PAKDD 2026
大数据·机器学习·数据挖掘·知识发现