一、环境准备
1. 工具箱安装
matlab
% 下载并安装libsvm-mat工具箱(推荐使用林教授版本)
% 解压后添加到MATLAB路径
addpath(genpath('libsvm-mat-2.91'));
% 验证安装
version -libsvm
2. 数据准备
matlab
% 加载示例数据(鸢尾花数据集)
load fisheriris
X = meas(:,1:2); % 使用前两个特征
Y = grp2idx(species); % 类别标签
% 数据标准化
[X_scaled, mu, sigma] = zscore(X);
二、核心SVM实现
1. 模型训练
matlab
% 基本训练代码
model = svmtrain(Y, X_scaled, '-t 2 -c 1 -g 0.1');
% 保存模型
save('svm_model.mat', 'model');
2. 模型预测
matlab
% 加载测试数据
load('test_data.mat');
X_test_scaled = zscore(X_test);
% 预测
[predict_label, accuracy, dec_values] = svmpredict(Y_test, X_test_scaled, model);
三、GUI开发实现
1. 界面设计(使用GUIDE)
matlab
% 创建GUI组件
fig = uifigure('Name','SVM GUI','Position',[100,100,600,400]);
btn_load = uibutton(fig,'Text','加载数据','Position',[20,300,100,30],'ButtonPushedFcn',@(btn,event) load_data());
% 数据展示区域
ax = uiaxes(fig,'Position',[0.2,0.2,0.6,0.6]);
xlabel(ax,'特征1'); ylabel(ax,'特征2');
% 参数设置面板
panel_params = uipanel(fig,'Title','参数设置','Position',[0.75,0.3,0.2,0.5]);
edit_c = uieditfield(panel_params,'numeric','Position',[10,20,80,25],'Label','C值:');
edit_gamma = uieditfield(panel_params,'numeric','Position',[10,50,80,25],'Label','Gamma:');
2. 回调函数实现
matlab
function load_data()
% 数据加载回调
[filename, pathname] = uigetfile({'*.mat','MAT文件';'*.csv','CSV文件'});
if isequal(filename,0)
return;
end
data = load(fullfile(pathname,filename));
global X Y;
X = data(:,1:end-1);
Y = data(:,end);
% 数据可视化
gscatter(X(:,1), X(:,2), Y);
title('原始数据分布');
end
function train_model()
% 训练回调
c = str2double(edit_c.Value);
gamma = str2double(edit_gamma.Value);
cmd = sprintf('-t 2 -c %f -g %f', c, gamma);
model = svmtrain(Y, X, cmd);
% 显示结果
msgbox(sprintf('训练完成!准确率: %.2f%%', model.acc(1)));
end
四、关键功能扩展
1. 参数网格搜索
matlab
function grid_search()
% 参数范围设置
C_values = [0.1, 1, 10];
gamma_values = [0.01, 0.1, 1];
best_acc = 0;
best_params = struct();
for c = C_values
for g = gamma_values
cmd = sprintf('-t 2 -c %f -g %f', c, g);
[~, ~, ~, acc] = svmpredict(Y, X, model, cmd);
if acc(1) > best_acc
best_acc = acc(1);
best_params.C = c;
best_params.Gamma = g;
end
end
end
% 显示最优参数
msgbox(sprintf('最优参数: C=%.2f, Gamma=%.2f\n准确率=%.2f%%',...
best_params.C, best_params.Gamma, best_acc));
end
2. 可视化模块
matlab
function plot_decision_boundary()
% 绘制决策边界
d = 0.02;
[x1Grid, x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)), ...
min(X(:,2)):d:max(X(:,2)));
grid = [x1Grid(:), x2Grid(:)];
[~, scores] = svmpredict(zeros(size(grid,1),1), grid, model);
[~, ~, ~, dec_values] = svmpredict(zeros(size(grid,1),1), grid, model);
figure;
gscatter(X(:,1), X(:,2), Y);
hold on;
contour(x1Grid, x2Grid, reshape(dec_values(:,2), size(x1Grid)), [0 0], 'k');
title('SVM决策边界');
legend('Location','best');
hold off;
end
参考代码 基于libsvm的支持向量机在MATLAB文件及其在MATLAB上的GUI www.youwenfan.com/contentcsi/65365.html
五、工程化优化
1. 大数据集处理
matlab
% 分块训练(适用于>10万样本)
batch_size = 1000;
n_batches = ceil(size(X,1)/batch_size);
model = [];
for i = 1:n_batches
start_idx = (i-1)*batch_size +1;
end_idx = min(i*batch_size, size(X,1));
X_batch = X(start_idx:end_idx,:);
Y_batch = Y(start_idx:end_idx);
model = svmtrain(Y_batch, X_batch, cmd, model);
end
2. GPU加速
matlab
% 使用gpuArray加速计算
if canUseGPU
X_gpu = gpuArray(X_scaled);
model = svmtrain(Y, X_gpu, cmd);
model = gather(model);
end
六、典型应用案例
1. 图像分类(手写数字识别)
matlab
% 加载MNIST数据集
[X, Y] = load_mnist();
% 特征降维
[coeff, score, ~] = pca(X);
X_pca = score(:,1:20);
% 训练SVM模型
model = svmtrain(Y, X_pca, '-t 0 -c 10');
2. 生物信息学(基因表达数据分析)
matlab
% 加载基因数据
load('gene_expression.mat');
% 处理不平衡数据
pos_idx = find(Y==1); neg_idx = find(Y==0);
X_balanced = [X(pos_idx,:); X(neg_idx(1:1000),:)];
Y_balanced = [Y(pos_idx); Y(neg_idx(1:1000))];
% 加权SVM训练
model = svmtrain(Y_balanced, X_balanced, '-w1 10 -t 2');