大数据Spark(六十九):Transformation转换算子intersection和subtract使用案例

文章目录

Transformation转换算子intersection和subtract使用案例

一、intersection使用案例

二、subtract使用案例


Transformation转换算子intersection和subtract使用案例

一、intersection使用案例

取两个RDD数据集的交集。

注意:返回新的RDD分区数与父RDD分区多的一致。

Java代码:

java 复制代码
SparkConf conf = new SparkConf().setMaster("local").setAppName("IntersectionTest");
JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD<String> rdd1 = sc.parallelize(Arrays.asList("a","b","c","d"), 3);
JavaRDD<String> rdd2 = sc.parallelize(Arrays.asList("c","d","e","f"), 4);

//intersection算子:对两个RDD进行intersection操作,返回一个新的RDD,RDD的分区数与父RDD分区数多的保持一致。
JavaRDD<String> rdd3 = rdd1.intersection(rdd2);
System.out.println("rdd3 分区数:" + rdd3.getNumPartitions());

rdd3.foreach(x-> System.out.println(x));

sc.stop();

Scala代码:

Scala 复制代码
val conf: SparkConf = new SparkConf().setMaster("local").setAppName("IntersectionTest")
val sc = new SparkContext(conf)
val rdd1: RDD[String] = sc.parallelize(List("a", "b", "c", "d"), 4)
val rdd2: RDD[String] = sc.parallelize(List("c", "d", "e", "f"), 3)

//intersection算子:对两个RDD进行intersection操作,返回一个新的RDD,RDD的分区数与父RDD分区数多的保持一致。
val rdd3: RDD[String] = rdd1.intersection(rdd2)
println(s"rdd3 分区数:${rdd3.getNumPartitions}")

rdd3.foreach(println)

sc.stop()

二、subtract使用案例

取两个RDD数据集的差集,rdd1.subtract(rdd2):返回rdd1中有但rdd2中没有的元素。

注意:生成RDD的分区数与subtract前面的RDD的分区数一致。

Java代码:

java 复制代码
SparkConf conf = new SparkConf().setMaster("local").setAppName("SubtractTest");
JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD<String> rdd1 = sc.parallelize(Arrays.asList("a","b","c","d"), 3);
JavaRDD<String> rdd2 = sc.parallelize(Arrays.asList("c","d","e","f"), 4);

//subtract算子:对两个RDD进行取差集操作,返回一个新的RDD,RDD的分区数与父RDD分区数多的保持一致。
JavaRDD<String> rdd3 = rdd1.subtract(rdd2);
System.out.println("rdd3 分区数:" + rdd3.getNumPartitions());
rdd3.foreach(x-> System.out.println(x));
sc.stop();

Scala代码:

java 复制代码
val conf: SparkConf = new SparkConf().setMaster("local").setAppName("SubtractTest")
val sc = new SparkContext(conf)

val rdd1: RDD[String] = sc.parallelize(List("a", "b", "c", "d"), 3)
val rdd2: RDD[String] = sc.parallelize(List("c", "d", "e", "f"), 4)

//subtract算子:对两个RDD进行取差集操作,返回一个新的RDD,生成RDD的分区数与subtract前面的RDD的分区数一致。
val rdd3: RDD[String] = rdd1.subtract(rdd2)
println(s"rdd3 分区数:${rdd3.getNumPartitions}")

rdd3.foreach(println)
sc.stop()

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
相关推荐
yumgpkpm1 小时前
CMP(类Cloudera CDP 7.3 404版华为泰山Kunpeng)和Apache Doris的对比
大数据·hive·hadoop·spark·apache·hbase·cloudera
呆呆小金人7 小时前
SQL字段对齐:性能优化与数据准确的关键
大数据·数据仓库·sql·数据库开发·etl·etl工程师
zskj_zhyl10 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
豆浆whisky11 小时前
Go分布式追踪实战:从理论到OpenTelemetry集成|Go语言进阶(15)
开发语言·分布式·golang
苗壮.11 小时前
「个人 Gitee 仓库」与「企业 Gitee 仓库」同步的几种常见方式
大数据·elasticsearch·gitee
驾数者12 小时前
Flink SQL入门指南:从零开始搭建流处理应用
大数据·sql·flink
乌恩大侠12 小时前
DGX Spark 恢复系统
大数据·分布式·spark
KM_锰12 小时前
flink开发遇到的问题
大数据·flink
happy_king_zi13 小时前
RabbitMQ Quorum 队列与classic队列关系
分布式·rabbitmq
labview_自动化14 小时前
RabbitMQ
分布式·rabbitmq·labview