大数据Spark(六十九):Transformation转换算子intersection和subtract使用案例

文章目录

Transformation转换算子intersection和subtract使用案例

一、intersection使用案例

二、subtract使用案例


Transformation转换算子intersection和subtract使用案例

一、intersection使用案例

取两个RDD数据集的交集。

注意:返回新的RDD分区数与父RDD分区多的一致。

Java代码:

java 复制代码
SparkConf conf = new SparkConf().setMaster("local").setAppName("IntersectionTest");
JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD<String> rdd1 = sc.parallelize(Arrays.asList("a","b","c","d"), 3);
JavaRDD<String> rdd2 = sc.parallelize(Arrays.asList("c","d","e","f"), 4);

//intersection算子:对两个RDD进行intersection操作,返回一个新的RDD,RDD的分区数与父RDD分区数多的保持一致。
JavaRDD<String> rdd3 = rdd1.intersection(rdd2);
System.out.println("rdd3 分区数:" + rdd3.getNumPartitions());

rdd3.foreach(x-> System.out.println(x));

sc.stop();

Scala代码:

Scala 复制代码
val conf: SparkConf = new SparkConf().setMaster("local").setAppName("IntersectionTest")
val sc = new SparkContext(conf)
val rdd1: RDD[String] = sc.parallelize(List("a", "b", "c", "d"), 4)
val rdd2: RDD[String] = sc.parallelize(List("c", "d", "e", "f"), 3)

//intersection算子:对两个RDD进行intersection操作,返回一个新的RDD,RDD的分区数与父RDD分区数多的保持一致。
val rdd3: RDD[String] = rdd1.intersection(rdd2)
println(s"rdd3 分区数:${rdd3.getNumPartitions}")

rdd3.foreach(println)

sc.stop()

二、subtract使用案例

取两个RDD数据集的差集,rdd1.subtract(rdd2):返回rdd1中有但rdd2中没有的元素。

注意:生成RDD的分区数与subtract前面的RDD的分区数一致。

Java代码:

java 复制代码
SparkConf conf = new SparkConf().setMaster("local").setAppName("SubtractTest");
JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD<String> rdd1 = sc.parallelize(Arrays.asList("a","b","c","d"), 3);
JavaRDD<String> rdd2 = sc.parallelize(Arrays.asList("c","d","e","f"), 4);

//subtract算子:对两个RDD进行取差集操作,返回一个新的RDD,RDD的分区数与父RDD分区数多的保持一致。
JavaRDD<String> rdd3 = rdd1.subtract(rdd2);
System.out.println("rdd3 分区数:" + rdd3.getNumPartitions());
rdd3.foreach(x-> System.out.println(x));
sc.stop();

Scala代码:

java 复制代码
val conf: SparkConf = new SparkConf().setMaster("local").setAppName("SubtractTest")
val sc = new SparkContext(conf)

val rdd1: RDD[String] = sc.parallelize(List("a", "b", "c", "d"), 3)
val rdd2: RDD[String] = sc.parallelize(List("c", "d", "e", "f"), 4)

//subtract算子:对两个RDD进行取差集操作,返回一个新的RDD,生成RDD的分区数与subtract前面的RDD的分区数一致。
val rdd3: RDD[String] = rdd1.subtract(rdd2)
println(s"rdd3 分区数:${rdd3.getNumPartitions}")

rdd3.foreach(println)
sc.stop()

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
相关推荐
Elastic 中国社区官方博客8 分钟前
使用 LangChain 和 Elasticsearch 开发一个 agentic RAG 助手
大数据·人工智能·elasticsearch·搜索引擎·ai·langchain·全文检索
z***026023 分钟前
Python大数据可视化:基于大数据技术的共享单车数据分析与辅助管理系统_flask+hadoop+spider
大数据·python·信息可视化
知识分享小能手26 分钟前
openEuler入门学习教程,从入门到精通,openEuler 24.03 环境下 Hadoop 全面实践指南(19)
大数据·hadoop·openeuler
艾莉丝努力练剑30 分钟前
时光织网:基于Rokid AI眼镜的家庭智能协同中枢设计与实现
大数据·人工智能·kotlin·rokid
初学者,亦行者36 分钟前
【前瞻创想】集成与创新并举,引领分布式云原生新范式
分布式·云原生
i***586737 分钟前
【RabbitMQ】超详细Windows系统下RabbitMQ的安装配置
windows·分布式·rabbitmq
小马过河R38 分钟前
tRPC-GO 框架Helloworld实践初体验
开发语言·分布式·后端·架构·golang·gin·beego
小程故事多_8041 分钟前
Kthena 引爆云原生推理革命:K8s 分布式架构破解 LLM 编排困局,吞吐狂飙 273%
人工智能·分布式·云原生·kubernetes·aigc
西岭千秋雪_42 分钟前
Kafka服务端日志梳理
java·分布式·zookeeper·kafka
初学者,亦行者1 小时前
【探索实战】从 30 分钟搭建到生产落地,分布式云原生管理新范式
分布式·云原生