第一例:石头剪刀布的机器学习(xedu,示例15)

  1. 准备好pycharm

解释器配置:

参考当前选择

  1. 推理现有图片

选择代码:15.MMEdu_cls_demo.py

开启推理方法,注释其他

推理的图片,这里用的是相对路径的调用方法,也可以写成绝对路径

绝对路径的地址参考:

D:/XEdu/XEdu示例代码/resources/testrock01-02.png

注意路径中的斜线向左斜

用相对路径的方式,选择了一个现有的模型

使用的是Lenet算法,这是一个适合于灰白图片的算法

第一次开机运行需要较长时间

74%的可能性被识别为rock

  1. 训练

数据集制作(这里仅展示xedu中已经内置好的数据集的目录格式和制作要求)

先整理好图片,图片大小应当相差不多,全是彩色或者全是黑白

数据集合目录格式

项目名称可以随意,测试集、训练集、验证集、类别文件的名称不可以更改

训练集:用于机器学习

验证集:用于每轮机器学习后验证,这个验证结果决定了下一轮机器学习的参数微调(自动)

测试集:机器学习全部完成后,用验证集验证训练结果

类别文件内部结构

注意要点:

    1. classes.txt和的内容和三个集合的目录名完全相同
    2. Classes.txt内分类的编号从0开始,本例中paper的编号为0、rock为1、scossors为2,编号不显示出来,但是未来图片推理时都会显示
    3. 每个分类换一行,没有结束没有空格

分类目录下的内容

本例是一个黑色照片的石头剪刀布,我们可以看到paper(布)下面是各种形态下的布

  1. 占比

一般来说,训练集:验证集:测试集比例为7:2:1或者8:1:1,完全相同的图片对于机器学习意义不大,反而容易出现过拟合和欠拟合。

开始训练:

解开训练代码

确认好:

数据集目录

保存路径目录

算法

这里石头剪刀布有3个类型

开始训练

注意看日志,目前训练到了第几个批次,一共有10批

  1. 加载刚训练的模型,进行一次推理,看看效果

推理的图片,可以从数据集目录下面的test_set获得更多图片

相关推荐
软件聚导航8 分钟前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授1 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪1 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06161 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor2 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES2 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr67892 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者2 小时前
浅谈人工智能(AI)对个人发展的影响
人工智能
一路向北he2 小时前
esp32 arduino环境的搭建
人工智能
SmartBrain2 小时前
Qwen3-VL 模型架构及原理详解
人工智能·语言模型·架构·aigc