第一例:石头剪刀布的机器学习(xedu,示例15)

  1. 准备好pycharm

解释器配置:

参考当前选择

  1. 推理现有图片

选择代码:15.MMEdu_cls_demo.py

开启推理方法,注释其他

推理的图片,这里用的是相对路径的调用方法,也可以写成绝对路径

绝对路径的地址参考:

D:/XEdu/XEdu示例代码/resources/testrock01-02.png

注意路径中的斜线向左斜

用相对路径的方式,选择了一个现有的模型

使用的是Lenet算法,这是一个适合于灰白图片的算法

第一次开机运行需要较长时间

74%的可能性被识别为rock

  1. 训练

数据集制作(这里仅展示xedu中已经内置好的数据集的目录格式和制作要求)

先整理好图片,图片大小应当相差不多,全是彩色或者全是黑白

数据集合目录格式

项目名称可以随意,测试集、训练集、验证集、类别文件的名称不可以更改

训练集:用于机器学习

验证集:用于每轮机器学习后验证,这个验证结果决定了下一轮机器学习的参数微调(自动)

测试集:机器学习全部完成后,用验证集验证训练结果

类别文件内部结构

注意要点:

    1. classes.txt和的内容和三个集合的目录名完全相同
    2. Classes.txt内分类的编号从0开始,本例中paper的编号为0、rock为1、scossors为2,编号不显示出来,但是未来图片推理时都会显示
    3. 每个分类换一行,没有结束没有空格

分类目录下的内容

本例是一个黑色照片的石头剪刀布,我们可以看到paper(布)下面是各种形态下的布

  1. 占比

一般来说,训练集:验证集:测试集比例为7:2:1或者8:1:1,完全相同的图片对于机器学习意义不大,反而容易出现过拟合和欠拟合。

开始训练:

解开训练代码

确认好:

数据集目录

保存路径目录

算法

这里石头剪刀布有3个类型

开始训练

注意看日志,目前训练到了第几个批次,一共有10批

  1. 加载刚训练的模型,进行一次推理,看看效果

推理的图片,可以从数据集目录下面的test_set获得更多图片

相关推荐
之歆18 小时前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派18 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词19 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续30119 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_3975780219 小时前
人工智能发展历史
人工智能
数字化转型202519 小时前
企业数字化架构集成能力建设
大数据·程序人生·机器学习
强盛小灵通专卖员19 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
OidEncoder19 小时前
从 “粗放清扫” 到 “毫米级作业”,编码器重塑环卫机器人新能力
人工智能·自动化·智慧城市
Hcoco_me19 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
阿部多瑞 ABU19 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作