json 可视化 2025 coco json

目录

查看各种类型;

[coco json可视化](#coco json可视化)


查看各种类型;

python 复制代码
import glob
import json
import os
import time

import numpy as np
import cv2
from PIL import Image, ImageDraw, ImageFont
from natsort import natsorted

def draw_shapes(json_path):
    # 读取 JSON
    with open(json_path, 'r', encoding='utf-8') as f:
        data = json.load(f)

    img_path = os.path.join(os.path.dirname(json_path), data["imagePath"])
    img = cv2.imread(img_path)
    if img is None:
        print(f"图片未找到: {img_path}")
        return

    shapes = data["shapes"]

    for shape in shapes:
        label = shape["label"]
        shape_type = shape["shape_type"]
        points = np.array(shape["points"], dtype=np.int32)

        color = (0, 255, 0)  # 默认绿色
        if shape_type == "ellipse":
            # points: [[cx, cy], [w, h]]
            cx, cy = map(int, points[0])
            w, h = map(int, points[1])
            cv2.ellipse(img, (cx, cy), (int(w / 2), int(h / 2)), 0, 0, 360, color, 2)

        elif shape_type in ["polygon", "contour"]:
            cv2.polylines(img, [points], isClosed=True, color=color, thickness=2)

        elif shape_type == "points":
            for (x, y) in points:
                cv2.circle(img, (int(x), int(y)), 3, (0, 0, 255), -1)

        elif shape_type == "rectangle":
            x1, y1 = points[0]
            x2, y2 = points[1]
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)

        else:
            print(f"⚠️ 未知类型: {shape_type}")
            continue

        # 绘制文字标签
        cv2.putText(img, label, (int(points[0][0]), int(points[0][1]) - 5),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)

    return img

if __name__ == '__main__':

    font = ImageFont.truetype("simhei.ttf", 22, encoding="utf-8")

    img_to =r'D:\data\tmp\data_similar\0\ellipse\1010_1905_0/'
    img_to =r'D:\data\tmp\data_similar\0\box_frame\1010_1938_0/'
    img_to =r'D:\data\tmp\data_similar\0\box_frame\1011_2037_0/'
    img_to =r'D:/data/tmp/data_similar/0/box_frame/1011_2037_0/shear_y/rotate/'
    img_to =r'D:/data/tmp/data_similar/0/box_frame/1011_2037_0/rotate/'
    img_to =r'D:\data\course_1023\jiezhi\20251023_1738_part001_seg/'
    img_to =r'C:\Users\ChanJing-01\Desktop\tmp\1024/'
    img_to =r'D:\data\Preview_10\20251021-185957_seg/'

    json_paths =glob.glob(img_to + "/*.json")

    json_paths=natsorted(json_paths,reverse=True)

    for json_path in json_paths:

        img = draw_shapes(json_path)

        cv2.imshow("Annotation Viewer", img)
        cv2.waitKey(0)
    cv2.destroyAllWindows()

coco json可视化

python 复制代码
import glob
import json
import os
import time

import numpy as np
import cv2
from PIL import Image, ImageDraw, ImageFont
from natsort import natsorted


def iou(box1, box2):
    '''
    box:[x1, y1, x2, y2]
    '''
    in_h = min(box1[3], box2[3]) - max(box1[1], box2[1])
    in_w = min(box1[2], box2[2]) - max(box1[0], box2[0])
    inner = 0 if in_h <0 or in_w <0 else in_h *in_w
    union = (box1[2] - box1[0]) * (box1[3] - box1[1]) + \
            (box2[2] - box2[0]) * (box2[3] - box2[1]) - inner
    iou = inner / union
    return iou


def iou_over(box1, box2):
    '''
    box:[x1, y1, x2, y2] 相交区域 最小的box的占比
    '''
    in_h = min(box1[3], box2[3]) - max(box1[1], box2[1])
    in_w = min(box1[2], box2[2]) - max(box1[0], box2[0])
    inner = 0 if in_h <0 or in_w <0 else in_h *in_w
    union = min((box1[2] - box1[0]) * (box1[3] - box1[1]), (box2[2] - box2[0]) * (box2[3] - box2[1]))
    iou = inner / union
    return iou

def batch_IoU(bbox, gt):
    """
    :param bbox: (n, 4)
    :param gt: (m, 4)
    :return: (n, m)
    numpy 广播机制 从后向前对齐。 维度为1 的可以重复等价为任意维度
    eg: (4,3,2)   (3,2)  (3,2)会扩充为(4,3,2)
        (4,1,2)   (3,2) (4,1,2) 扩充为(4, 3, 2)  (3, 2)扩充为(4, 3,2) 扩充的方法为重复
    广播会在numpy的函数 如sum, maximun等函数中进行
    pytorch同理。
    扩充维度的方法:
    eg: a  a.shape: (3,2)  a[:, None, :] a.shape: (3, 1, 2) None 对应的维度相当于newaxis
    """
    lt = np.maximum(bbox[:, None, :2], gt[:, :2])  # left_top (x, y)
    rb = np.minimum(bbox[:, None, 2:], gt[:, 2:])  # right_bottom (x, y)
    wh = np.maximum(rb - lt , 0)                # inter_area (w, h)
    inter_areas = wh[:, :, 0] * wh[:, :, 1]        # shape: (n, m)
    box_areas = (bbox[:, 2] - bbox[:, 0] ) * (bbox[:, 3] - bbox[:, 1] )
    gt_areas = (gt[:, 2] - gt[:, 0] ) * (gt[:, 3] - gt[:, 1] )
    IoU = inter_areas / (box_areas[:, None] + gt_areas - inter_areas)
    return IoU

class MyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return super(MyEncoder, self).default(obj)

if __name__ == '__main__':

    font = ImageFont.truetype("simhei.ttf", 22, encoding="utf-8")

    img_to =r'D:\data\quexian\det_data\det_0915\rotated_results/'
    img_to =r'D:\data\tmp\data_label\video2/'
    img_to =r'D:\data\tmp\data_similar\0928_1747_1/'
    img_to =r'D:\data\tmp\data_similar\0\string\0929_1812_0\stretch/'

    from_labels =glob.glob(img_to + "/*.json")

    from_labels=natsorted(from_labels,reverse=True)

    for f_label_file in from_labels:
        base_name= os.path.basename(f_label_file)
        to_val = json.load(open(f_label_file, 'r',encoding='utf-8'))
        imagePath = to_val['imagePath']
        img_path= img_to + imagePath
        print(img_path)
        if "shapes" not in to_val:
            continue
        to_shapes =to_val['shapes']

        if not os.path.exists(img_path):
            img_path=f_label_file.replace('.json', '.jpg')
        frame=cv2.imread(img_path)
        if len(to_shapes)<1:
            print('none',img_path)
        for to_shape in to_shapes:

            if to_shape["shape_type"]== "rectangle":

                print('label',to_shape['label'])
                box2 = to_shape['points'][0] + to_shape['points'][1]

                points = np.array(to_shape["points"])
                xmin = (min(points[:, 0]) if min(points[:, 0]) > 0 else 0)
                xmax = (max(points[:, 0]) if max(points[:, 0]) > 0 else 0)
                ymin = (min(points[:, 1]) if min(points[:, 1]) > 0 else 0)
                ymax = (max(points[:, 1]) if max(points[:, 1]) > 0 else 0)

                cv2.rectangle(frame, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 0, 255), 1)

                start = time.time()
                cv2_im = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                pil_im = Image.fromarray(cv2_im)
                draw = ImageDraw.Draw(pil_im)
                draw.text((int(xmin), int(ymin)-10), to_shape['label'], (255, 0, 0), font=font)
                frame = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR)
            # cv2.rectangle(img, (int(to_shape['points'][0][0]), int(to_shape['points'][0][1])), (int(to_shape['points'][1][0]), int(to_shape['points'][1][1])), (0, 0, 255), 2)

        if np.prod(frame.shape[:2]) > 1000 * 1300:
            x_scale = np.sqrt(1000 * 1200 / np.prod(frame.shape[:2]))

            new_width = int(frame.shape[1] * x_scale)
            new_height = int(frame.shape[0] * x_scale)

            # 确保宽高都是偶数
            if new_width % 2 != 0:
                new_width += 1
            if new_height % 2 != 0:
                new_height += 1
            frame = cv2.resize(frame, (new_width, new_height), interpolation=cv2.INTER_AREA)
        cv2.imshow("image" ,frame)
        cv2.waitKey(0)
相关推荐
weixin_4624462335 分钟前
Python用Flask后端解析Excel图表,Vue3+ECharts前端动态还原(附全套代码)
前端·python·flask·echats
偷星星的贼1142 分钟前
如何为开源Python项目做贡献?
jvm·数据库·python
秋刀鱼程序编程42 分钟前
Java基础入门(七)---异常处理
java·开发语言·python
二十雨辰1 小时前
[python]-基础语法
python
小白学大数据1 小时前
基于 Python 的知网文献批量采集与可视化分析
开发语言·爬虫·python·小程序
Ulyanov1 小时前
PyVista战场可视化实战(一):构建3D战场环境的基础
开发语言·python·3d·tkinter·gui开发
fai厅的秃头姐!1 小时前
01-python基础-day01python基础
python
深蓝电商API1 小时前
Scrapy 爬虫监控:结合 Prometheus+Grafana 实践
爬虫·python·scrapy
薛不痒1 小时前
项目:矿物分类(训练模型)
开发语言·人工智能·python·学习·算法·机器学习·分类