聊聊Spark的分区

更多干货抢先看: 大数据干货合集

通过上篇文章【Spark RDD详解】,大家应该了解到Spark会通过DAG将一个Spark job中用到的所有RDD划分为不同的stage,每个stage内部都会有很多子任务处理数据,而每个stage的任务数是决定性能优劣的关键指标。

首先来了解一下Spark中分区的概念,其实就是将要处理的数据集根据一定的规则划分为不同的子集,每个子集都算做一个单独的分区,由集群中不同的机器或者是同一台机器不同的core进行分区并行处理。

Spark对接不同的数据源,在第一次得到的分区数是不一样的,但都有一个共性:对于map类算子或者通过map算子产生的彼此之间具有窄依赖关系的RDD的分区数,子RDD分区与父RDD分区是一致的。而对于通过shuffle差生的子RDD则由分区器决定,当然默认分区器是HashPartitioner,我们完全可以根据实际业务场景进行自定义分区器,只需继承Parttioner组件,主要重写几个方法即可

以加载hdfs文件为例,Spark在读取hdfs文件还没有调用其他算子进行业务处理前,得到的RDD分区数由什么决定呢?关键在于文件是否可切分!

对于可切分文件,如text文件,那么通过加载文件得到的RDD的分区数默认与该文件的block数量保持一致;

对于不可切分文件,它只有一个block块,那么得到的RDD的分区数默认也就是1。

当然,我们可以通过调用一些算子对RDD进行重分区,如repartition。

这里必须要强调一点,很多小伙伴不理解,RDD既然不存储数据,那么加载过来的文件都跑哪里去了呢?这里先给大家提个引子------blockmanager,Spark自己实现的存储管理器。RDD的存储概念其实block,至于block的大小可以根据不同的数据源进行调整,blockmanager的数据存储、传输都是以block进行的。至于block内部传输的时候,它的大小也是可以通过参数控制的,比如广播变量、shuffle传输时block的大小等

近期关联文章:
Spark RDD详解
Spark通识
大数据常用技术栈

更多干货抢先看: 大数据干货合集

相关推荐
缘空如是1 天前
基础工具包之JSON 工厂类
java·json·json切换
追逐梦想的张小年1 天前
JUC编程04
java·idea
好家伙VCC1 天前
### WebRTC技术:实时通信的革新与实现####webRTC(Web Real-TimeComm
java·前端·python·webrtc
萤丰信息1 天前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
南极星10051 天前
蓝桥杯JAVA--启蒙之路(十)class版本 模块
java·开发语言
消失的旧时光-19431 天前
第十三课:权限系统如何设计?——RBAC 与 Spring Security 架构
java·架构·spring security·rbac
不能隔夜的咖喱1 天前
牛客网刷题(2)
java·开发语言·算法
serve the people1 天前
python环境搭建 (十二) pydantic和pydantic-settings类型验证与解析
java·网络·python
lekami_兰1 天前
Java 并发工具类详解:4 大核心工具 + 实战场景,告别 synchronized
java·并发工具
有位神秘人1 天前
Android中Notification的使用详解
android·java·javascript