文章目录
- [一、Ingest Pipeline & Painless Script](#一、Ingest Pipeline & Painless Script)
-
- 1、应用场景
- [2、Ingest Node](#2、Ingest Node)
- [3、Pipeline & Processor](#3、Pipeline & Processor)
-
- (1)简介
- (2)创建pipeline
- (3)使用pipeline更新数据
- (4)借助update_by_query更新已存在的文档
- [(5)Ingest Node VS Logstash](#(5)Ingest Node VS Logstash)
- (6)Painless
- (7)脚本缓存
一、Ingest Pipeline & Painless Script
1、应用场景
应用场景: 修复与增强写入数据
案例
需求:Tags字段中,逗号分隔的文本应该是数组,而不是一个字符串。后期需要对Tags进行Aggregation统计
bash
#Blog数据,包含3个字段,tags用逗号间隔
PUT tech_blogs/_doc/1
{
"title":"Introducing big data......",
"tags":"hadoop,elasticsearch,spark",
"content":"You konw, for big data"
}
2、Ingest Node
Elasticsearch 5.0后,引入的一种新的节点类型。默认配置下,每个节点都是Ingest Node:
具有预处理数据的能力,可拦截lndex或 Bulk API的请求
对数据进行转换,并重新返回给Index或 Bulk APl
无需Logstash,就可以进行数据的预处理,例如:
为某个字段设置默认值;重命名某个字段的字段名;对字段值进行Split 操作
支持设置Painless脚本,对数据进行更加复杂的加工
3、Pipeline & Processor
(1)简介
Pipeline ------管道会对通过的数据(文档),按照顺序进行加工
Processor------Elasticsearch 对一些加工的行为进行了抽象包装
Elasticsearch 有很多内置的Processors,也支持通过插件的方式,实现自己的Processor
一些内置的Processors
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/ingest-processors.html
Split Processor : 将给定字段值分成一个数组
Remove / Rename Processor :移除一个重命名字段
Append : 为商品增加一个新的标签
Convert:将商品价格,从字符串转换成float 类型
Date / JSON:日期格式转换,字符串转JSON对象
Date lndex Name Processor︰将通过该处理器的文档,分配到指定时间格式的索引中
Fail Processor︰一旦出现异常,该Pipeline 指定的错误信息能返回给用户
Foreach Process︰数组字段,数组的每个元素都会使用到一个相同的处理器
Grok Processor︰日志的日期格式切割)
Gsub / Join / Split︰字符串替换│数组转字符串/字符串转数组
Lowercase / upcase︰大小写转换

bash
# 测试split tags
POST _ingest/pipeline/_simulate
{
"pipeline": {
"description": "to split blog tags",
"processors": [
{
"split": {
"field": "tags",
"separator": ","
}
}
]
},
"docs": [
{
"_index": "index",
"_id": "id",
"_source": {
"title": "Introducing big data......",
"tags": "hadoop,elasticsearch,spark",
"content": "You konw, for big data"
}
},
{
"_index": "index",
"_id": "idxx",
"_source": {
"title": "Introducing cloud computering",
"tags": "openstack,k8s",
"content": "You konw, for cloud"
}
}
]
}
#同时为文档,增加一个字段。blog查看量
POST _ingest/pipeline/_simulate
{
"pipeline": {
"description": "to split blog tags",
"processors": [
{
"split": {
"field": "tags",
"separator": ","
}
},
{
"set":{
"field": "views",
"value": 0
}
}
]
},
"docs": [
{
"_index":"index",
"_id":"id",
"_source":{
"title":"Introducing big data......",
"tags":"hadoop,elasticsearch,spark",
"content":"You konw, for big data"
}
},
{
"_index":"index",
"_id":"idxx",
"_source":{
"title":"Introducing cloud computering",
"tags":"openstack,k8s",
"content":"You konw, for cloud"
}
}
]
}
(2)创建pipeline
bash
# 为ES添加一个 Pipeline
PUT _ingest/pipeline/blog_pipeline
{
"description": "a blog pipeline",
"processors": [
{
"split": {
"field": "tags",
"separator": ","
}
},
{
"set":{
"field": "views",
"value": 0
}
}
]
}
#查看Pipleline
GET _ingest/pipeline/blog_pipeline
(3)使用pipeline更新数据
bash
#不使用pipeline更新数据
PUT tech_blogs/_doc/1
{
"title":"Introducing big data......",
"tags":"hadoop,elasticsearch,spark",
"content":"You konw, for big data"
}
#使用pipeline更新数据
PUT tech_blogs/_doc/2?pipeline=blog_pipeline
{
"title": "Introducing cloud computering",
"tags": "openstack,k8s",
"content": "You konw, for cloud"
}
(4)借助update_by_query更新已存在的文档
bash
#update_by_query 会导致错误
POST tech_blogs/_update_by_query?pipeline=blog_pipeline
{
}
#增加update_by_query的条件
POST tech_blogs/_update_by_query?pipeline=blog_pipeline
{
"query": {
"bool": {
"must_not": {
"exists": {
"field": "views"
}
}
}
}
}
GET tech_blogs/_search
(5)Ingest Node VS Logstash

(6)Painless
自Elasticsearch 5.x后引入,专门为Elasticsearch 设计,扩展了Java的语法。6.0开始,ES只支持 Painless。Groovy,JavaScript和 Python 都不再支持。Painless支持所有Java 的数据类型及Java API子集。
Painless Script具备以下特性:
高性能/安全
支持显示类型或者动态定义类型
Painless的用途:
可以对文档字段进行加工处理
.更新或删除字段,处理数据聚合操作
.Script Field:对返回的字段提前进行计算
.Function Score:对文档的算分进行处理
在lngest Pipeline中执行脚本
在Reindex APl,Update By Query时,对数据进行处理
通过Painless脚本访问字段
测试:
bash
# 增加一个 Script Prcessor
POST _ingest/pipeline/_simulate
{
"pipeline": {
"description": "to split blog tags",
"processors": [
{
"split": {
"field": "tags",
"separator": ","
}
},
{
"script": {
"source": """
if(ctx.containsKey("content")){
ctx.content_length = ctx.content.length();
}else{
ctx.content_length=0;
}
"""
}
},
{
"set":{
"field": "views",
"value": 0
}
}
]
},
"docs": [
{
"_index":"index",
"_id":"id",
"_source":{
"title":"Introducing big data......",
"tags":"hadoop,elasticsearch,spark",
"content":"You konw, for big data"
}
},
{
"_index":"index",
"_id":"idxx",
"_source":{
"title":"Introducing cloud computering",
"tags":"openstack,k8s",
"content":"You konw, for cloud"
}
}
]
}
DELETE tech_blogs
PUT tech_blogs/_doc/1
{
"title":"Introducing big data......",
"tags":"hadoop,elasticsearch,spark",
"content":"You konw, for big data",
"views":0
}
POST tech_blogs/_update/1
{
"script": {
"source": "ctx._source.views += params.new_views",
"params": {
"new_views":100
}
}
}
# 查看views计数
POST tech_blogs/_search
#保存脚本在 Cluster State
POST _scripts/update_views
{
"script":{
"lang": "painless",
"source": "ctx._source.views += params.new_views"
}
}
POST tech_blogs/_update/1
{
"script": {
"id": "update_views",
"params": {
"new_views":1000
}
}
}
GET tech_blogs/_search
{
"script_fields": {
"rnd_views": {
"script": {
"lang": "painless",
"source": """
java.util.Random rnd = new Random();
doc['views'].value+rnd.nextInt(1000);
"""
}
}
},
"query": {
"match_all": {}
}
}
(7)脚本缓存
脚本编译的开销较大,Elasticsearch会将脚本编译后缓存在Cache 中
.Inline scripts和 Stored Scripts都会被缓存
.默认缓存100个脚本
