关键词解释:点积(Dot Product)在深度学习中的意义

"点积"(Dot Product)是大模型,尤其是 Transformer 架构 中一个非常核心的数学操作。它在 注意力机制(Attention) 中起着关键作用。

【【Transformer】最强动画讲解!目前B站最全最详细的Transformer教程,2025最新版!从理论到实战,通俗易懂解释原理,草履虫都学的会!】https://www.bilibili.com/video/BV1fGeAz6Eie?p=6&vd_source=e14fbfa32a7c9167af15da4f1666253a

下面我们从基础概念到实际应用,一步步帮你深入理解"点积"在大模型中的意义。


一、什么是点积?(数学基础)
1. 定义

两个向量点积(也叫内积)定义为:

2. 几何意义
  • 点积衡量两个向量的相似度
  • 公式:a⋅b=∣a∣∣b∣cos⁡θ
    • θ 是两向量夹角。
    • 当方向越接近(夹角小),点积越大;
    • 方向相反时,点积为负。

✅ 所以:点积越大 → 两个向量越相似


二、点积在大模型中的作用:注意力机制的核心

在 Transformer 的 Self-Attention 中,点积用于计算一个词对其他词的"关注度"。

1. Attention 中的 Q, K, V
  • Query (Q):当前词"想查询什么信息"
  • Key (K):其他词"能提供什么信息"
  • Value (V):其他词的"实际内容"

注意力得分 = Query 和 Key 的相似度 → 用点积计算!

2. 点积注意力公式

其中:

  • 就是批量点积:每个 Query 向量与所有 Key 向量做点积。
  • d_k 是 Key 向量的维度,用于缩放(防止 softmax 梯度消失)。
  • softmax 将点积结果归一化为概率分布(即"注意力权重")。
  • 最后用权重加权 Value 得到输出。

三、举个例子:理解"点积如何决定注意力"

假设我们有句子:"I love AI and I love NLP"

我们想计算第一个 "love" 对其他词的关注度。

Key 向量(简化)
I [1, 0]
love [0, 1]
AI [0.8, 0.2]
... ...

当前词 "love" 的 Query 向量:[0, 1]

计算点积:

  • love⋅I=\[0,1]⋅\[1,0]=0love⋅I=\[0,1]⋅\[1,0]=0
  • love⋅love=\[0,1]⋅\[0,1]=1love⋅love=\[0,1]⋅\[0,1]=1
  • love⋅AI=\[0,1]⋅\[0.8,0.2]=0.2love⋅AI=\[0,1]⋅\[0.8,0.2]=0.2

→ 模型发现 "love" 和自己最相似,其次是 "AI",几乎不关注 "I"。

经过 softmax 后,会把"love"和"AI"分配较高的注意力权重。


四、为什么用点积而不是其他相似度?
方法 优缺点
点积 快速、可并行、适合 GPU 计算;但数值随维度增大而变大 → 需要缩放 d_kd_k​
余弦相似度 已归一化,只看方向;但计算更复杂
加性注意力 更灵活,但参数多、慢

Transformer 选择缩放点积注意力 (Scaled Dot-Product Attention)是因为:高效 + 可扩展

相关推荐
m0_6501082417 分钟前
Gemini 2.5:重塑多模态 AI 边界的全面解读
论文阅读·人工智能·多模态大模型·gemini 2.5·跨模态融合
wuk99824 分钟前
基于Matlab的彩色图像特征提取实现
人工智能·计算机视觉·matlab
GEO_NEWS30 分钟前
2025下半年GEO服务商技术革命:万数科技以AI全链路优化定义行业标杆
人工智能
说私域37 分钟前
智能名片链动2+1模式S2B2C商城小程序:构建私域生态“留”量时代的新引擎
大数据·人工智能·小程序
说私域39 分钟前
基于开源AI大模型与AI智能名片S2B2C商城小程序的直播简介引流策略研究——以B站直播为例
人工智能·小程序
金紫火1 小时前
AiPPT 新功能体验:从“一键生成”到更智能的演示制作
人工智能·ppt
Dev7z1 小时前
基于计算机视觉与机器学习的课堂坐姿智能监测与预警系统
人工智能·机器学习·计算机视觉
水如烟1 小时前
孤能子视角:“多劳多得”原则在知识经济时代的失效危机分析
人工智能
钟屿1 小时前
Back to Basics: Let Denoising Generative Models Denoise 论文阅读学习
论文阅读·人工智能·笔记·学习·计算机视觉
张较瘦_1 小时前
[论文阅读] AI + 数据库 | 拆解智能数据库:交互、管理、内核三层革新,AI 如何重塑数据处理
数据库·论文阅读·人工智能