Hudi、Iceberg、Delta Lake、Paimon四种数据湖的建表核心语法

一、Hudi 核心建表语法(基于Spark SQL)

Hudi建表需明确表类型(COW/MOR)、主键、分区字段,依赖Spark配置或WITH参数指定核心属性。

1. MOR表(Merge-On-Read,实时写入优先)
sql 复制代码
CREATE TABLE [IF NOT EXISTS] 表名 (
  字段名 类型 [COMMENT '注释'],
  ...,
  主键字段 类型,  -- 唯一标识记录
  预合并字段 类型,  -- 解决主键冲突(如update_time)
  分区字段 类型  -- 如dt(yyyyMMdd)
)
USING HUDI  -- 指定Hudi格式
[PARTITIONED BY (分区字段)]  -- 分区配置
LOCATION '存储路径'  -- 数据存储路径(HDFS/OSS/S3)
TBLPROPERTIES (
  'hoodie.table.type' = 'MERGE_ON_READ',  -- 表类型:MOR
  'hoodie.datasource.write.recordkey.field' = '主键字段',  -- 主键
  'hoodie.datasource.write.precombine.field' = '预合并字段',  -- 冲突解决字段
  'hoodie.datasource.write.hive_style_partitioning' = 'true'  -- 兼容Hive分区格式
);
2. COW表(Copy-On-Write,读取优先)
sql 复制代码
CREATE TABLE [IF NOT EXISTS] 表名 (
  字段名 类型 [COMMENT '注释'],
  ...,
  主键字段 类型,
  分区字段 类型
)
USING HUDI
[PARTITIONED BY (分区字段)]
LOCATION '存储路径'
TBLPROPERTIES (
  'hoodie.table.type' = 'COPY_ON_WRITE',  -- 表类型:COW
  'hoodie.datasource.write.recordkey.field' = '主键字段',  -- 主键
  'hoodie.datasource.write.partitionpath.field' = '分区字段'  -- 分区字段
);

二、Iceberg 核心建表语法(基于Spark SQL)

Iceberg建表强调元数据管理和多引擎兼容,需指定分区和Catalog配置,支持显式/隐藏分区。

1. 基础分区表(显式分区)
sql 复制代码
-- 先配置Iceberg扩展(Spark环境)
SET spark.sql.extensions = org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions;

CREATE TABLE [IF NOT EXISTS] 表名 (
  字段名 类型 [COMMENT '注释'],
  ...,
  分区字段 类型  -- 如dt、region
)
USING ICEBERG  -- 指定Iceberg格式
PARTITIONED BY (分区字段1, 分区字段2)  -- 支持复合分区
LOCATION '存储路径'
TBLPROPERTIES (
  'catalog' = 'hive'  -- 兼容Hive Metastore(可选)
);
2. 隐藏分区表(分区字段透明)
sql 复制代码
CREATE TABLE [IF NOT EXISTS] 表名 (
  字段名 类型 [COMMENT '注释'],
  ...,
  时间字段 TIMESTAMP,
  -- 隐藏分区字段:由时间字段自动生成(如按日期分区)
  隐藏分区字段 DATE GENERATED ALWAYS AS DATE(时间字段)
)
USING ICEBERG
PARTITIONED BY (隐藏分区字段)  -- 分区字段对用户透明
LOCATION '存储路径';

三、Delta Lake 核心建表语法(基于Spark SQL)

Delta Lake建表依赖Spark生态和事务日志,支持流批一体,区分标准表和外部表。

1. 标准表(Managed Table,事务优先)
sql 复制代码
-- 先配置Delta扩展(Spark环境)
SET spark.sql.extensions = io.delta.sql.DeltaSparkSessionExtension;

CREATE TABLE [IF NOT EXISTS] 表名 (
  字段名 类型 [COMMENT '注释'],
  ...,
  分区字段 类型
)
USING DELTA  -- 指定Delta格式
PARTITIONED BY (分区字段)  -- 分区配置
[LOCATION '存储路径']  -- 可选:不指定则使用默认路径
TBLPROPERTIES (
  'delta.logRetentionDuration' = '7 days'  -- 事务日志保留时间(可选)
);
2. 外部表(External Table,数据共享)
sql 复制代码
CREATE EXTERNAL TABLE [IF NOT EXISTS] 表名 (
  字段名 类型 [COMMENT '注释'],
  ...
)
USING DELTA
LOCATION '已有数据路径'  -- 必须指定:复用现有数据
TBLPROPERTIES ('delta.autoOptimize.optimizeWrite' = 'true');  -- 自动优化小文件(可选)

Paimon建表基于LSM-Tree架构,需指定主键、合并策略,支持主键表和Append-Only表。

1. 主键表(Primary Key Table,实时更新)
sql 复制代码
-- 先创建Paimon Catalog(Flink环境)
CREATE CATALOG paimon_catalog WITH (
  'type' = 'paimon',
  'warehouse' = '存储路径',  -- 数据仓库根路径
  'hive-metastore-uri' = 'thrift://hive-metastore:9083'  -- 对接Hive Metastore(可选)
);
USE CATALOG paimon_catalog;

CREATE TABLE [IF NOT EXISTS] 表名 (
  字段名 类型 [COMMENT '注释'],
  ...,
  主键字段1 类型,
  主键字段2 类型,  -- 支持复合主键
  分区字段 类型
)
WITH (
  'primary-key' = '主键字段1,主键字段2',  -- 必选:主键定义
  'partition' = '分区字段',  -- 可选:分区配置
  'merge-engine' = 'deduplicate',  -- 合并策略(去重/部分更新/聚合)
  'changelog-producer' = 'input'  -- 生成变更日志(供下游消费,可选)
);
2. Append-Only表(仅追加,日志场景)
sql 复制代码
CREATE TABLE [IF NOT EXISTS] 表名 (
  字段名 类型 [COMMENT '注释'],
  ...,
  分区字段 类型
)
WITH (
  'partition' = '分区字段',  -- 可选:分区配置
  'write-mode' = 'append-only',  -- 必选:仅追加模式
  'file.format' = 'parquet'  -- 存储格式(默认parquet,可选)
);

核心语法对比总结

数据湖 核心标识 必选配置项 表类型区分参数
Hudi USING HUDI 主键(recordkey)、表类型(table.type) hoodie.table.type = MERGE_ON_READ/COPY_ON_WRITE
Iceberg USING ICEBERG 分区字段、Catalog扩展配置 隐藏分区用GENERATED ALWAYS AS
Delta Lake USING DELTA (无强制,但事务依赖_delta_log 外部表用EXTERNAL关键字
Paimon WITH属性配置 主键表需primary-key、合并策略 write-mode = append-only(仅追加表)

核心语法聚焦"表类型标识+关键属性配置",实际使用时需结合计算引擎的环境配置(如Spark/Flink扩展、Catalog)。

相关推荐
励志成为糕手2 分钟前
MapReduce工作流程:从MapTask到Yarn机制深度解析
大数据·hadoop·分布式·mapreduce·yarn
Code_Geo6 分钟前
JAVA大数据场景使用StreamingOutput
java·大数据·开发语言·streamingoutput
音符犹如代码11 分钟前
Kafka 技术架构与核心原理深度解析
大数据·微服务·架构·kafka
璞华Purvar12 分钟前
璞华易知ChatBI精彩亮相百度智能云Agent大会,以自然语言驱动企业智能决策
大数据·人工智能
啊吧怪不啊吧39 分钟前
从数据到智能体大模型——cozeAI大模型开发(第二篇)
大数据·ai·语言模型·ai编程
Haooog1 小时前
Elasticsearch (ES) 面试题清单(不定时更新)
大数据·elasticsearch·搜索引擎·面试
编织幻境的妖1 小时前
Hadoop核心组件及其作用概述
大数据·hadoop·分布式
emfuture1 小时前
传统劳动密集型加工厂,面对日益普及的自动化技术,应如何实现转型升级?
大数据·人工智能·智能制造·工业互联网
云老大TG:@yunlaoda3601 小时前
腾讯云国际站代理商 ACE有什么优势呢?
大数据·云计算·腾讯云
百胜软件@百胜软件3 小时前
重塑零售未来:百胜智能中台+胜券AI,赋能品牌零售撬动3100亿增量市场
大数据·人工智能·零售