MessagePromptTemplate Types in LangChain

MessagePromptTemplate Types in LangChain (Simplified Guide)

This guide explains the different types of MessagePromptTemplate in LangChain, using exact code examples and outputs from the original source. It breaks down how each type works---with no added content or modifications---to make learning easier.

1. Overview of MessagePromptTemplate Types

LangChain provides MessagePromptTemplate variants to create structured chat messages for different roles. The most commonly used types are:

  • AIMessagePromptTemplate: Creates messages from the AI assistant (e.g., the model's responses).
  • SystemMessagePromptTemplate: Creates system messages that define the AI's role, rules, or instructions (e.g., "You are a helpful translator").
  • HumanMessagePromptTemplate: Creates messages from the human user (e.g., the user's questions or inputs).

For more flexibility (e.g., custom roles or dynamic messages), LangChain also offers two additional types: ChatMessagePromptTemplate and MessagesPlaceholder.

2. ChatMessagePromptTemplate: For Custom Roles

When your chat model supports arbitrary roles (not just "AI", "system", or "human"), use ChatMessagePromptTemplate to define a custom role name.

Original Code Example

python 复制代码
from langchain.prompts import ChatMessagePromptTemplate

# Define a prompt template with a placeholder ({subject})
prompt = "May the {subject} be with you"

# Create a ChatMessagePromptTemplate with a custom role ("Jedi")
chat_message_prompt = ChatMessagePromptTemplate.from_template(
    role="Jedi", 
    template=prompt
)

# Fill in the placeholder and generate the message
formatted_message = chat_message_prompt.format(subject="force")
print(formatted_message)

Original Output

复制代码
ChatMessage(content='May the force be with you', additional_kwargs={}, role='Jedi')

Simple Explanation

  • Import : We load ChatMessagePromptTemplate from LangChain.
  • Custom Role : The role="Jedi" parameter lets us assign a unique role (not just the default ones).
  • Placeholder : {subject} in the prompt is replaced with "force" when we call .format(subject="force").
  • Output : The result is a ChatMessage object labeled with the custom "Jedi" role.

3. MessagesPlaceholder: For Dynamic Message Lists

MessagesPlaceholder gives you full control over the messages included in a prompt. Use it when:

  • You're unsure which roles to use for messages.
  • You want to insert a pre-defined list of messages (e.g., a past conversation) during formatting.

Original Code Example

Step 1: Import Tools and Create Templates
python 复制代码
from langchain.prompts import MessagesPlaceholder, HumanMessagePromptTemplate
from langchain.prompts.chat import ChatPromptTemplate
from langchain.schema import HumanMessage, AIMessage

# 1. Create a human prompt template (asks to summarize a conversation)
human_prompt = "Summarize our conversation so far in {word_count} words."
human_message_template = HumanMessagePromptTemplate.from_template(human_prompt)

# 2. Create a ChatPromptTemplate with MessagesPlaceholder
# "variable_name='conversation'" lets us pass a message list later
chat_prompt = ChatPromptTemplate.from_messages([
    MessagesPlaceholder(variable_name="conversation"), 
    human_message_template
])
Step 2: Define a Sample Conversation and Format the Prompt
python 复制代码
# Create a sample past conversation (human + AI messages)
human_message = HumanMessage(content="What is the best way to learn programming?")
ai_message = AIMessage(content="""\
1. Choose a programming language: Decide on a programming language that you want to learn.
2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.
3. Practice, practice, practice: The best way to learn programming is through hands-on experience\
""")

# Fill in the placeholder (conversation list + word count) and get messages
formatted_messages = chat_prompt.format_prompt(
    conversation=[human_message, ai_message], 
    word_count="10"
).to_messages()

print(formatted_messages)

Original Output

复制代码
[
    HumanMessage(content='What is the best way to learn programming?', additional_kwargs={}), 
    AIMessage(content='1. Choose a programming language: Decide on a programming language that you want to learn. \n\n2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.\n\n3. Practice, practice, practice: The best way to learn programming is through hands-on experience', additional_kwargs={}), 
    HumanMessage(content='Summarize our conversation so far in 10 words.', additional_kwargs={})
]

Simple Explanation

  • MessagesPlaceholder : The variable_name="conversation" acts as a "slot" where we can insert a list of messages (e.g., a past chat) later.
  • Dynamic Insertion : When we call .format_prompt(conversation=[human_message, ai_message]), the placeholder is replaced with the sample conversation.
  • Final Prompt: The output combines the past conversation + the new human request (to summarize in 10 words)---perfect for tasks like summarizing chat history.

Key Takeaways (From Original Source)

  • Use the 3 common templates for standard roles: AI, system, human.
  • Use ChatMessagePromptTemplate for custom roles (e.g., "Jedi", "Teacher").
  • Use MessagesPlaceholder to add dynamic message lists (e.g., past conversations) to prompts.
  • All code and outputs match the original source---no changes or additions.
相关推荐
疯狂踩坑人5 小时前
【Python版 2026 从零学Langchain 1.x】(二)结构化输出和工具调用
后端·python·langchain
冀博6 小时前
从零到一:我如何用 LangChain + 智谱 AI 搭建具备“记忆与手脚”的智能体
人工智能·langchain
qq_455760857 小时前
langchain(二)
langchain
nvd118 小时前
LangChain 经典回顾:ConversationBufferMemory 与 ConversationChain
langchain
沐雪架构师9 小时前
LangChain 1.0 Agent开发实战指南
开发语言·javascript·langchain
nvd1112 小时前
LangChain 核心对比:ChatPromptTemplate vs PromptTemplate
人工智能·langchain
<花开花落>13 小时前
浅学 LangChain,AI 赋能软件测试
软件测试·langchain
玄同76514 小时前
LangChain v1.0 中间件深度解析:从 Callback 到 Middleware 的演进
人工智能·语言模型·自然语言处理·中间件·langchain·agent·智能体
沐雪架构师14 小时前
LangChain 1.0 记忆管理:短期与长期记忆详解
服务器·数据库·langchain
TGITCIC18 小时前
LangChain入门(十五)- LangGraph为什么这么香,看它是如何逆天DIFY的
langchain·工作流·rag·ai agent·ai智能体·langgraph·agentic