MessagePromptTemplate Types in LangChain

MessagePromptTemplate Types in LangChain (Simplified Guide)

This guide explains the different types of MessagePromptTemplate in LangChain, using exact code examples and outputs from the original source. It breaks down how each type works---with no added content or modifications---to make learning easier.

1. Overview of MessagePromptTemplate Types

LangChain provides MessagePromptTemplate variants to create structured chat messages for different roles. The most commonly used types are:

  • AIMessagePromptTemplate: Creates messages from the AI assistant (e.g., the model's responses).
  • SystemMessagePromptTemplate: Creates system messages that define the AI's role, rules, or instructions (e.g., "You are a helpful translator").
  • HumanMessagePromptTemplate: Creates messages from the human user (e.g., the user's questions or inputs).

For more flexibility (e.g., custom roles or dynamic messages), LangChain also offers two additional types: ChatMessagePromptTemplate and MessagesPlaceholder.

2. ChatMessagePromptTemplate: For Custom Roles

When your chat model supports arbitrary roles (not just "AI", "system", or "human"), use ChatMessagePromptTemplate to define a custom role name.

Original Code Example

python 复制代码
from langchain.prompts import ChatMessagePromptTemplate

# Define a prompt template with a placeholder ({subject})
prompt = "May the {subject} be with you"

# Create a ChatMessagePromptTemplate with a custom role ("Jedi")
chat_message_prompt = ChatMessagePromptTemplate.from_template(
    role="Jedi", 
    template=prompt
)

# Fill in the placeholder and generate the message
formatted_message = chat_message_prompt.format(subject="force")
print(formatted_message)

Original Output

复制代码
ChatMessage(content='May the force be with you', additional_kwargs={}, role='Jedi')

Simple Explanation

  • Import : We load ChatMessagePromptTemplate from LangChain.
  • Custom Role : The role="Jedi" parameter lets us assign a unique role (not just the default ones).
  • Placeholder : {subject} in the prompt is replaced with "force" when we call .format(subject="force").
  • Output : The result is a ChatMessage object labeled with the custom "Jedi" role.

3. MessagesPlaceholder: For Dynamic Message Lists

MessagesPlaceholder gives you full control over the messages included in a prompt. Use it when:

  • You're unsure which roles to use for messages.
  • You want to insert a pre-defined list of messages (e.g., a past conversation) during formatting.

Original Code Example

Step 1: Import Tools and Create Templates
python 复制代码
from langchain.prompts import MessagesPlaceholder, HumanMessagePromptTemplate
from langchain.prompts.chat import ChatPromptTemplate
from langchain.schema import HumanMessage, AIMessage

# 1. Create a human prompt template (asks to summarize a conversation)
human_prompt = "Summarize our conversation so far in {word_count} words."
human_message_template = HumanMessagePromptTemplate.from_template(human_prompt)

# 2. Create a ChatPromptTemplate with MessagesPlaceholder
# "variable_name='conversation'" lets us pass a message list later
chat_prompt = ChatPromptTemplate.from_messages([
    MessagesPlaceholder(variable_name="conversation"), 
    human_message_template
])
Step 2: Define a Sample Conversation and Format the Prompt
python 复制代码
# Create a sample past conversation (human + AI messages)
human_message = HumanMessage(content="What is the best way to learn programming?")
ai_message = AIMessage(content="""\
1. Choose a programming language: Decide on a programming language that you want to learn.
2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.
3. Practice, practice, practice: The best way to learn programming is through hands-on experience\
""")

# Fill in the placeholder (conversation list + word count) and get messages
formatted_messages = chat_prompt.format_prompt(
    conversation=[human_message, ai_message], 
    word_count="10"
).to_messages()

print(formatted_messages)

Original Output

复制代码
[
    HumanMessage(content='What is the best way to learn programming?', additional_kwargs={}), 
    AIMessage(content='1. Choose a programming language: Decide on a programming language that you want to learn. \n\n2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.\n\n3. Practice, practice, practice: The best way to learn programming is through hands-on experience', additional_kwargs={}), 
    HumanMessage(content='Summarize our conversation so far in 10 words.', additional_kwargs={})
]

Simple Explanation

  • MessagesPlaceholder : The variable_name="conversation" acts as a "slot" where we can insert a list of messages (e.g., a past chat) later.
  • Dynamic Insertion : When we call .format_prompt(conversation=[human_message, ai_message]), the placeholder is replaced with the sample conversation.
  • Final Prompt: The output combines the past conversation + the new human request (to summarize in 10 words)---perfect for tasks like summarizing chat history.

Key Takeaways (From Original Source)

  • Use the 3 common templates for standard roles: AI, system, human.
  • Use ChatMessagePromptTemplate for custom roles (e.g., "Jedi", "Teacher").
  • Use MessagesPlaceholder to add dynamic message lists (e.g., past conversations) to prompts.
  • All code and outputs match the original source---no changes or additions.
相关推荐
重整旗鼓~19 小时前
1.大模型使用
java·语言模型·langchain
hnode1 天前
🚀 前端开发者的 AI 入门指南:5 分钟搭建你的第一个 RAG 智能问答系统
langchain
大模型真好玩1 天前
LangChain1.0实战之多模态RAG系统(二)——多模态RAG系统图片分析与语音转写功能实现
人工智能·langchain·mcp
大模型教程1 天前
谷歌AI Agent技术指南深度解读,从概念到生产
langchain·llm·agent
爱装代码的小瓶子1 天前
【初识AI】大模型和LangChain?
人工智能·langchain
AI大模型1 天前
LangChain、LangGraph、LangSmith这些AI开发框架有什么区别?一篇文章解释清楚
langchain·llm·agent
爬点儿啥1 天前
[Ai Agent] 09 LangGraph 进阶:构建可控、可协作的多智能体系统
人工智能·ai·langchain·大模型·agent·langgraph
吴佳浩1 天前
LangChain / LLM 开发中:invoke() 与 predict() 的区别
python·langchain·llm
大模型教程2 天前
LangChain×Qwen3:高性能RAG系统实战项目
程序员·langchain·llm
AI大模型2 天前
打造生产级复杂 RAG 系统:LangChain, LangGraph 与 RAGAS 实战指南
langchain·llm·agent