flink 1.20 物化表(Materialized Tables)

特性概述

Flink 1.20 引入了物化表(Materialized Tables)的概念,旨在简化批处理和流处理的数据管道,并提供一致的开发体验。物化表通过查询和数据新鲜度规范定义,Flink 引擎会自动维护查询结果,确保数据的实时性。

详细说明

什么是物化表

物化表(Materialized Tables)是:

  • 一个由查询定义的表
  • 自动维护查询结果
  • 支持定期刷新数据
  • 提供数据新鲜度保证

核心特性

  1. 自动维护:Flink 自动执行查询并更新结果
  2. 数据新鲜度:可以指定数据刷新频率
  3. 流批统一:支持流处理和批处理模式
  4. 简化开发:无需手动管理数据管道

语法规则

sql 复制代码
CREATE MATERIALIZED TABLE table_name
[WITH (table_options)]
AS
SELECT ...
[REFRESH INTERVAL 'interval'];

示例代码

示例 1:基本物化表创建

sql 复制代码
-- 创建源表
CREATE TABLE orders_source (
    order_id INT,
    user_id INT,
    product_id INT,
    amount DECIMAL(10, 2),
    order_time TIMESTAMP(3)
) WITH (
    'connector' = 'kafka',
    'topic' = 'orders',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json'
);

-- 创建物化表(每 3 分钟刷新一次)
CREATE MATERIALIZED TABLE user_order_stats
WITH (
    'connector' = 'kafka',
    'topic' = 'user_stats',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json',
    'refresh' = '3 MINUTES'
)
AS
SELECT 
    user_id,
    COUNT(*) as order_count,
    SUM(amount) as total_amount,
    AVG(amount) as avg_amount,
    MAX(order_time) as last_order_time
FROM orders_source
GROUP BY user_id;

示例 2:物化表与窗口聚合

sql 复制代码
-- 创建物化表,使用窗口聚合
CREATE MATERIALIZED TABLE hourly_order_stats
WITH (
    'connector' = 'kafka',
    'topic' = 'hourly_stats',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json',
    'refresh' = '1 HOUR'
)
AS
SELECT 
    window_start,
    window_end,
    product_id,
    COUNT(*) as order_count,
    SUM(amount) as total_amount
FROM TABLE(
    TUMBLE(
        TABLE orders_source,
        DESCRIPTOR(order_time),
        INTERVAL '1' HOUR
    )
)
GROUP BY window_start, window_end, product_id;

示例 3:物化表与 JOIN

sql 复制代码
-- 创建用户表
CREATE TABLE users (
    user_id INT,
    user_name STRING,
    city STRING
) WITH (
    'connector' = 'jdbc',
    'url' = 'jdbc:mysql://localhost:3306/test',
    'table-name' = 'users',
    'username' = 'root',
    'password' = 'password'
);

-- 创建物化表,包含 JOIN
CREATE MATERIALIZED TABLE user_order_details
WITH (
    'connector' = 'kafka',
    'topic' = 'user_order_details',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json',
    'refresh' = '5 MINUTES'
)
AS
SELECT 
    u.user_id,
    u.user_name,
    u.city,
    COUNT(o.order_id) as order_count,
    SUM(o.amount) as total_amount
FROM users u
LEFT JOIN orders_source o ON u.user_id = o.user_id
GROUP BY u.user_id, u.user_name, u.city;

示例 4:物化表写入文件系统

sql 复制代码
-- 创建物化表,写入文件系统
CREATE MATERIALIZED TABLE daily_order_summary
WITH (
    'connector' = 'filesystem',
    'path' = 'file:///path/to/daily_summary',
    'format' = 'parquet',
    'refresh' = '1 DAY'
)
AS
SELECT 
    DATE_FORMAT(order_time, 'yyyy-MM-dd') as order_date,
    product_id,
    COUNT(*) as order_count,
    SUM(amount) as total_amount,
    AVG(amount) as avg_amount
FROM orders_source
GROUP BY DATE_FORMAT(order_time, 'yyyy-MM-dd'), product_id;

示例 5:物化表与过滤条件

sql 复制代码
-- 创建物化表,包含过滤条件
CREATE MATERIALIZED TABLE high_value_orders
WITH (
    'connector' = 'kafka',
    'topic' = 'high_value_orders',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json',
    'refresh' = '1 MINUTE'
)
AS
SELECT 
    order_id,
    user_id,
    amount,
    order_time
FROM orders_source
WHERE amount > 1000;

示例 6:物化表与复杂聚合

sql 复制代码
-- 创建物化表,包含复杂聚合
CREATE MATERIALIZED TABLE product_statistics
WITH (
    'connector' = 'kafka',
    'topic' = 'product_stats',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json',
    'refresh' = '10 MINUTES'
)
AS
SELECT 
    product_id,
    COUNT(*) as order_count,
    COUNT(DISTINCT user_id) as unique_customers,
    SUM(amount) as total_revenue,
    AVG(amount) as avg_order_value,
    MIN(amount) as min_order_value,
    MAX(amount) as max_order_value,
    STDDEV(amount) as stddev_order_value
FROM orders_source
GROUP BY product_id;

示例 7:物化表与时间函数

sql 复制代码
-- 创建物化表,使用时间函数
CREATE MATERIALIZED TABLE time_based_stats
WITH (
    'connector' = 'kafka',
    'topic' = 'time_stats',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json',
    'refresh' = '1 HOUR'
)
AS
SELECT 
    EXTRACT(HOUR FROM order_time) as hour_of_day,
    EXTRACT(DAY_OF_WEEK FROM order_time) as day_of_week,
    product_id,
    COUNT(*) as order_count,
    SUM(amount) as total_amount
FROM orders_source
GROUP BY 
    EXTRACT(HOUR FROM order_time),
    EXTRACT(DAY_OF_WEEK FROM order_time),
    product_id;

示例 8:物化表与子查询

sql 复制代码
-- 创建物化表,使用子查询
CREATE MATERIALIZED TABLE top_customers
WITH (
    'connector' = 'kafka',
    'topic' = 'top_customers',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json',
    'refresh' = '1 HOUR'
)
AS
SELECT 
    user_id,
    total_amount,
    order_count
FROM (
    SELECT 
        user_id,
        SUM(amount) as total_amount,
        COUNT(*) as order_count
    FROM orders_source
    GROUP BY user_id
) t
WHERE total_amount > 10000
ORDER BY total_amount DESC
LIMIT 100;

示例 9:修改物化表

sql 复制代码
-- 修改物化表的查询
ALTER MATERIALIZED TABLE user_order_stats
AS
SELECT 
    user_id,
    COUNT(*) as order_count,
    SUM(amount) as total_amount,
    AVG(amount) as avg_amount,
    -- 新增字段
    MAX(order_time) as last_order_time,
    MIN(order_time) as first_order_time
FROM orders_source
GROUP BY user_id;

-- 修改物化表的刷新间隔
ALTER MATERIALIZED TABLE user_order_stats
SET ('refresh' = '5 MINUTES');

示例 10:删除物化表

sql 复制代码
-- 删除物化表
DROP MATERIALIZED TABLE user_order_stats;

Java API 示例

示例 1:使用 Table API 创建物化表

java 复制代码
import org.apache.flink.table.api.*;

public class MaterializedTableExample {
    
    public static void main(String[] args) {
        TableEnvironment tEnv = TableEnvironment.create(
            EnvironmentSettings.newInstance()
                .inStreamingMode()
                .build()
        );
        
        // 创建源表
        tEnv.executeSql(
            "CREATE TABLE orders_source (" +
            "  order_id INT," +
            "  user_id INT," +
            "  amount DECIMAL(10, 2)," +
            "  order_time TIMESTAMP(3)" +
            ") WITH (" +
            "  'connector' = 'kafka'," +
            "  'topic' = 'orders'," +
            "  'properties.bootstrap.servers' = 'localhost:9092'," +
            "  'format' = 'json'" +
            ")"
        );
        
        // 创建物化表
        tEnv.executeSql(
            "CREATE MATERIALIZED TABLE user_order_stats " +
            "WITH (" +
            "  'connector' = 'kafka'," +
            "  'topic' = 'user_stats'," +
            "  'properties.bootstrap.servers' = 'localhost:9092'," +
            "  'format' = 'json'," +
            "  'refresh' = '3 MINUTES'" +
            ") " +
            "AS " +
            "SELECT " +
            "  user_id, " +
            "  COUNT(*) as order_count, " +
            "  SUM(amount) as total_amount " +
            "FROM orders_source " +
            "GROUP BY user_id"
        );
    }
}

测试用例

测试类 1:物化表基本功能测试

java 复制代码
import org.apache.flink.table.api.*;
import org.junit.Test;

public class MaterializedTableTest {
    
    @Test
    public void testCreateMaterializedTable() {
        TableEnvironment tEnv = TableEnvironment.create(
            EnvironmentSettings.newInstance()
                .inStreamingMode()
                .build()
        );
        
        // 创建源表
        tEnv.executeSql(
            "CREATE TABLE test_source (" +
            "  id INT," +
            "  value DECIMAL(10, 2)" +
            ") WITH (" +
            "  'connector' = 'values'," +
            "  'data-id' = '1'" +
            ")"
        );
        
        // 创建物化表
        tEnv.executeSql(
            "CREATE MATERIALIZED TABLE test_materialized " +
            "WITH (" +
            "  'connector' = 'print'," +
            "  'refresh' = '1 MINUTE'" +
            ") " +
            "AS " +
            "SELECT id, SUM(value) as total " +
            "FROM test_source " +
            "GROUP BY id"
        );
    }
}

注意事项

  1. 刷新间隔

    • 根据业务需求设置合适的刷新间隔
    • 过短的间隔可能导致性能问题
    • 过长的间隔可能导致数据不够新鲜
  2. 数据一致性

    • 物化表是查询结果的快照
    • 刷新时可能短暂不一致
    • 适合最终一致性场景
  3. 存储成本

    • 物化表需要存储查询结果
    • 考虑存储成本和数据保留策略
  4. 查询复杂度

    • 复杂查询可能影响刷新性能
    • 建议优化查询性能
  5. 连接器支持

    • 需要连接器支持写入操作
    • Kafka、文件系统等连接器支持良好

最佳实践

  1. 选择合适的刷新间隔:根据业务需求平衡数据新鲜度和性能
  2. 优化查询性能:确保物化表的查询能够高效执行
  3. 监控物化表:监控刷新状态和数据质量
  4. 合理使用:物化表适合聚合和汇总场景

相关 JEP 和 FLIP

参考资料

相关推荐
互联网科技看点4 小时前
孕期科学补铁,保障母婴健康-仁合益康蛋白琥珀酸铁口服溶液成为产妇优选方案
大数据
Dxy12393102164 小时前
深度解析 Elasticsearch:从倒排索引到 DSL 查询的实战突围
大数据·elasticsearch·搜索引擎
Hello.Reader4 小时前
Flink 文件系统通用配置默认文件系统与连接数限制实战
vue.js·flink·npm
YongCheng_Liang4 小时前
零基础学大数据:大数据基础与前置技术夯实
大数据·big data
AC赳赳老秦4 小时前
2026国产算力新周期:DeepSeek实战适配英伟达H200,引领大模型训练效率跃升
大数据·前端·人工智能·算法·tidb·memcache·deepseek
鹏说大数据5 小时前
Spark 和 Hive 的关系与区别
大数据·hive·spark
B站计算机毕业设计超人5 小时前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
B站计算机毕业设计超人5 小时前
计算机毕业设计hadoop+spark+hive交通拥堵预测 交通流量预测 智慧城市交通大数据 交通客流量分析(源码+LW文档+PPT+讲解视频)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
数据架构师的AI之路5 小时前
深入了解大数据领域Hive的HQL语言特性
大数据·hive·hadoop·ai
L***一5 小时前
大数据技术专业中专生职业发展路径探析
大数据