人工智能备考2.2.1-2.2.5总结

此为备考记录,主要记录常用或不熟的语法用法,后续会更新调整的

迭代次数

训练Logistic回归模型(最大迭代次数为1000次)

max_iter为最大迭代次数,所以填入LogisticRegression(max_iter=1000)

训练模型

训练 Logistic 回归模型

数据变量名.fit(X_train,y_train)

保存模型

pickle.dump(前文的模型名,上文的as后的变量)

分析测试结果

(y_test == 上文新生成的ytes变量名).mean

预测数据

模型变量名.predict(X_test)

转换数据

转换成数值类型pd.to_numeric(需要转换的数据,errors='coerce')

X = df['Your age'].apply(X) # 将分类变量转为数值变量

y = df['Your age'].apply(lambda x: int(x.split(' ')[0])) # 假设年龄段为整数

X = pd.get_dummies(X) # 将分类变量转为数值变量

选择特征值建模

选择对应的变量放入对应的位置,去文中找(类似下文)

X = df[['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'model year', 'origin']]

y = df['mpg']

将数据集划分为训练集和测试集(测试集占比20%

一般固定为以下格式

train_test_split(X,y, random_state=42)

决策树数量

创建随机森林回归模型实例(创建的决策树的数量为100)

RandomForestRegressor(n_estimators=100, random_state=42)

2.2.3导入类错位

import xgboost as xgb修改为:from xgboost import XGBRegressor

测试工具对模型进行测试

train_score = rf_model.score(X_train,y_train) #训练集分数

test_score = rf_model.fit(X_test,y_test) #测试集分数

mse = mean_squared_error(y_test,y_pred) #均方误差

r2 = r2_score(y_test,y_pred) #决定系数

结果

with open('2.2.3_report_xgb.txt', 'w') as xgb_report_file:

xgb_report_file.write(f'XGBoost训练集得分: {xgb_model.score(X_train,y_train) }\n')

xgb_report_file.write(f'XGBoost测试集得分: {xgb_model.score(X_test,y_test) }\n')

xgb_report_file.write(f'XGBoost均方误差(MSE): {mean_squared_error(y_test,y_pred) }\n')

xgb_report_file.write(f'XGBoost决定系数(R^2): {r2_score(y_test,y_pred)}\n')

相关推荐
进击切图仔11 分钟前
GraspNet 训练集下载、解释和整理
人工智能·pytorch·conda
sensen_kiss12 分钟前
INT301 Bio-computation 生物计算(神经网络)Pt.9 自我组织特征映射(Self-Organizing Fearure Map)
人工智能·深度学习·神经网络·机器学习
小毅&Nora12 分钟前
【人工智能】【AI外呼】 ③ 从骚扰电话到智能语音机器人:技术架构、行业生态与工程实践
人工智能·架构·智能外呼机器人
霍格沃兹测试开发学社-小明18 分钟前
测试开发技术路线全新升级:在云原生与AI时代构建核心竞争力
大数据·人工智能·云原生
jinxinyuuuus20 分钟前
TikTok Watermark Remover:用户行为模拟、动态Token认证与视频流的去噪
网络·人工智能·计算机视觉·架构
说私域24 分钟前
基于链动2+1模式AI智能名片S2B2C商城小程序的微商运营内容研究
大数据·人工智能·小程序
free-elcmacom25 分钟前
机器学习项目实战——鸢尾花大作战
人工智能·机器学习
一尘之中26 分钟前
冰海通航的科技密码:葫芦岛港的破冰实践与智慧港口建设
人工智能·科技·ai写作
longze_727 分钟前
Uigenius:革新 UI/UX 设计的 AI 利器
人工智能·ui·ai·ux·prototype·uigenius
新智元28 分钟前
30 年数学难题,AI 仅 6 小时告破!陶哲轩:ChatGPT 们都失败了
人工智能·openai