深度学习(1)—— 基本概念

目录

1.深度学习在干啥?

2.几种学习范式


1.深度学习在干啥?

现在有这样一个任务,科学家收集了50万条 巴基斯坦的食物价格数据,想要借助此数据来预测各个食物的每公斤价格,其中部分数据如下所示:

|----------------|--------------|------------|---------------------|-----------|------------------|
| Item | Category | City | Source | Month | Price_per_Kg |
| Milk | Dairy | Lahore | Wholesale Market | June | 188.93 |
| Beef (Local) | Meat | Sialkot | Wholesale Market | April | 866.6 |
| Mango | Fruit | Karachi | Municipal Report | October | 243.67 |
| Flour (Atta) | Grain | Quetta | Retailer Listing | June | 121.4 |
| Tomato | Vegetable | Karachi | Retailer Listing | June | 127.83 |
| Fish (Pomfret) | Meat | Rawalpindi | Online Retailer | May | 1109.04 |
| Ghee | Oil | Quetta | Local Market Survey | December | 1010.15 |
| Potato | Vegetable | Quetta | Retailer Listing | January | 65.6 |
| Mango | Fruit | Hyderabad | Municipal Report | January | 281.27 |
| ... | ... | ... | ... | ... | ... |

从传统的人工角度来看,这个问题几乎不可能解决,原因在于数据量太过于庞大,很难发现食物价格与各个因素之间的潜在关系,并且计算也不方便。针对这么个情况,深度学习由此而生。


从本质上而言,深度学习的过程,就是不断训练一个函数模型的过程,使得这个模型依据我们已知的数据,得到一个函数,使得这个函数能够较为准确的得到我们想要预测值的输出。

现在回到我们最初的表格数据,我们可以发现该数据集,包括5个特征 ,1个标签 ,表格中的每一行即为数据集当中的一个样本

我们通过每个样本的特征输入,不断让模型产生输出,与我们的真实情况对比,通过模型自我不断调整内部的参数,减少预测值与实际值的误差,从而最终实现我们的深度模型。

而针对预测值为连续值的任务,我称之为回归(Regression)任务 ,如果预测值为离散值,我们称之为分类(classify)任务

2.几种学习范式




相关推荐
Jiede14 分钟前
LSTM详细介绍(基于股票收盘价预测场景)
人工智能·rnn·lstm
明月照山海-16 分钟前
机器学习周报三十三
人工智能·机器学习
传说故事19 分钟前
【论文自动阅读】视频生成模型的Inference-time物理对齐 with Latent World Model
人工智能·深度学习·音视频·视频生成
半臻(火白)19 分钟前
Clawbot:重新定义AI的「行动派」革命
人工智能
造夢先森22 分钟前
Clawdbot(OpenClaw)安装部署教程
人工智能·微服务·云原生
攻城狮7号23 分钟前
宇树 开源 UnifoLM-VLA-0 大模型:给人形机器人装上通用的“直觉大脑”
人工智能·机器人·具身智能·宇树科技·unifolm-vla-0
aihuangwu27 分钟前
ChatGPT和Gemini图表怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转
Bits to Atoms31 分钟前
宇树G1语音助手完整开发指南(下)——从零构建智能知识库对话系统
人工智能·机器人·音视频·语音识别
Katecat996631 小时前
古巽伽罗语字符识别与分类_Cascade-Mask-RCNN_RegNetX-400MF实现
人工智能·目标跟踪
说文科技1 小时前
大模型项目实战之dpo微调
人工智能·算法