深度学习(1)—— 基本概念

目录

1.深度学习在干啥?

2.几种学习范式


1.深度学习在干啥?

现在有这样一个任务,科学家收集了50万条 巴基斯坦的食物价格数据,想要借助此数据来预测各个食物的每公斤价格,其中部分数据如下所示:

|----------------|--------------|------------|---------------------|-----------|------------------|
| Item | Category | City | Source | Month | Price_per_Kg |
| Milk | Dairy | Lahore | Wholesale Market | June | 188.93 |
| Beef (Local) | Meat | Sialkot | Wholesale Market | April | 866.6 |
| Mango | Fruit | Karachi | Municipal Report | October | 243.67 |
| Flour (Atta) | Grain | Quetta | Retailer Listing | June | 121.4 |
| Tomato | Vegetable | Karachi | Retailer Listing | June | 127.83 |
| Fish (Pomfret) | Meat | Rawalpindi | Online Retailer | May | 1109.04 |
| Ghee | Oil | Quetta | Local Market Survey | December | 1010.15 |
| Potato | Vegetable | Quetta | Retailer Listing | January | 65.6 |
| Mango | Fruit | Hyderabad | Municipal Report | January | 281.27 |
| ... | ... | ... | ... | ... | ... |

从传统的人工角度来看,这个问题几乎不可能解决,原因在于数据量太过于庞大,很难发现食物价格与各个因素之间的潜在关系,并且计算也不方便。针对这么个情况,深度学习由此而生。


从本质上而言,深度学习的过程,就是不断训练一个函数模型的过程,使得这个模型依据我们已知的数据,得到一个函数,使得这个函数能够较为准确的得到我们想要预测值的输出。

现在回到我们最初的表格数据,我们可以发现该数据集,包括5个特征 ,1个标签 ,表格中的每一行即为数据集当中的一个样本

我们通过每个样本的特征输入,不断让模型产生输出,与我们的真实情况对比,通过模型自我不断调整内部的参数,减少预测值与实际值的误差,从而最终实现我们的深度模型。

而针对预测值为连续值的任务,我称之为回归(Regression)任务 ,如果预测值为离散值,我们称之为分类(classify)任务

2.几种学习范式




相关推荐
无心水12 小时前
【分布式利器:腾讯TSF】10、TSF故障排查与架构评审实战:Java架构师从救火到防火的生产哲学
java·人工智能·分布式·架构·限流·分布式利器·腾讯tsf
小鸡吃米…19 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫19 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)19 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan19 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维20 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS20 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd20 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟21 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然21 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析