实践案例 - 使用Python和TensorFlow构建简单的图像分类模型

这里我们将利用TensorFlow库来创建一个基本的卷积神经网络(CNN),用于识别MNIST手写数字数据集中的图片。这个例子展示了如何轻松地应用深度学习技术解决问题。

```python

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

加载数据

(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

数据预处理

train_images = train_images.reshape((60000, 28, 28, 1))

test_images = test_images.reshape((10000, 28, 28, 1))

归一化像素值到 [0, 1] 区间

train_images, test_images = train_images / 255.0, test_images / 255.0

构建CNN模型

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

添加全连接层

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10))

编译模型

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

训练模型

history = model.fit(train_images, train_labels, epochs=5,

validation_data=(test_images, test_labels))

评估模型

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print('\nTest accuracy:', test_acc)

绘制训练过程中的损失和准确率变化

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

plt.plot(history.history['loss'], label='Training Loss')

plt.plot(history.history['val_loss'], label='Validation Loss')

plt.legend()

plt.title('Loss over Epochs')

plt.subplot(1, 2, 2)

plt.plot(history.history['accuracy'], label='Training Accuracy')

plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

plt.legend()

plt.title('Accuracy over Epochs')

plt.show()

```

这段代码首先加载了MNIST数据集并对图像进行了预处理;接着定义了一个包含三个卷积层和两个全连接层的简单CNN架构;最后训练该模型并在测试集上评估其性能。此外,还绘制了训练过程中损失值及准确率的变化曲线图,以便直观地了解模型的学习情况。

相关推荐
serve the people17 小时前
TensorFlow 中 “延迟变量创建(Deferred Variable Creation)” 机制
人工智能·python·tensorflow
serve the people17 小时前
TensorFlow 中定义模型和层
人工智能·tensorflow·neo4j
serve the people1 天前
tensorflow tf.function 的 多态性(Polymorphism)
人工智能·python·tensorflow
serve the people2 天前
tensorflow tf.function 的两种执行模式(计算图执行 vs Eager 执行)的关键差异
人工智能·python·tensorflow
serve the people2 天前
tensorflow中的计算图是什么
人工智能·python·tensorflow
serve the people2 天前
tensorflow计算图的底层原理
人工智能·tensorflow·neo4j
serve the people2 天前
TensorFlow 图执行(tf.function)的 “非严格执行(Non-strict Execution)” 特性
人工智能·python·tensorflow
泰迪智能科技2 天前
图书推荐分享 | 堪称教材天花板,深度学习教材-TensorFlow 2 深度学习实战(第2版)(微课版)
人工智能·深度学习·tensorflow
韩曙亮3 天前
【人工智能】AI 人工智能 技术 学习路径分析 ③ ( NLP 自然语言处理 )
人工智能·pytorch·学习·ai·自然语言处理·nlp·tensorflow
qq_17082750 CNC注塑机数采3 天前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn