NLP基础(一)_简介

NLP,全称是 Natural Language Processing ,即自然语言处理。它是人工智能(AI)和计算语言学的一个重要分支,研究的是计算机如何理解、解释、生成和与人类语言互动的技术。

一、NLP 是什么

NLP 让计算机"读懂人类的语言",包括中文、英文等自然语言,并基于这些语言做出推理、回答、翻译等动作。它是"人机沟通"的核心技术。

二、NLP 的核心任务分类

1. 语言理解(NLU)

让机器读懂语言的意思。

  • 分词:把句子分成有意义的词(主要是中文里要做,英文天生有空格)。
  • 词性标注:识别词汇的语法角色(如名词、动词)。
  • 命名实体识别(NER):识别人名、地名、机构名等。
  • 句法分析:分析句子的语法结构。
  • 语义理解:理解句子的实际含义,比如"我今天没去上班"表达的是缺勤的事实。

2. 语言生成(NLG)

让机器能写出语言。

  • 文本生成:如 ChatGPT 自动写文章、写摘要。
  • 对话系统:自动客服、AI助手。
  • 自动翻译:如 Google 翻译、百度翻译。
  • 文本摘要:提取文章主旨。

3. 语言转换

  • 语音识别(ASR):把说话声转换成文字。
  • 语音合成(TTS):让机器"开口说话"。

三、NLP 的典型应用

应用领域 举例
搜索引擎 用户搜索意图理解、关键词扩展
智能客服 问答系统、FAQ 机器人
机器翻译 英文↔中文,神经网络翻译
语音助手 Siri、Alexa、科大讯飞
情感分析 判断评论是正面还是负面
文本生成 自动写稿、写代码、写邮件
法律/医疗/金融 文书分析、自动摘要、合同审核

四、NLP 的底层技术(简要)

1. 文本表示

  • 词袋模型(Bag of Words)
  • TF-IDF(词频-逆文档频率)
  • Word2Vec / GloVe:将词变成向量(可用来计算"男人 - 女人 ≈ 国王 - 女王")
  • BERT / GPT:上下文理解强的预训练模型

2. 模型类型

  • 传统模型:决策树、SVM、HMM(隐马尔可夫模型)
  • 深度学习模型
    • RNN / LSTM:擅长处理顺序文本
    • Transformer(BERT、GPT 属于此):目前主流、效果好

五、NLP 面临的挑战

  1. 歧义:一句话可能有多种解释,例如"他看着那棵树哭了"。
  2. 上下文理解:需要"记住"前面说了什么。
  3. 多语言处理:语言差异很大(如中英结构差异)。
  4. 常识推理:如"把杯子倒过来水会洒出来",需要常识。

六、热门模型举例

模型名称 简介
BERT Google提出,强在理解句子
GPT OpenAI推出,强在生成内容
ChatGPT GPT的应用产品,具备对话能力
T5 Text-to-Text 统一模型,翻译、摘要都能做
RoBERTa 对BERT优化,理解力更强

七、NLP 和其他领域的关系

  • 与计算机视觉结合:如图文识别、图像描述生成
  • 与推荐系统结合:理解用户评论、文章内容
  • 与知识图谱结合:理解实体之间的关系
相关推荐
JeffDingAI16 小时前
【Datawhale学习笔记】NLP初级分词技术
笔记·学习·自然语言处理
鹿角片ljp1 天前
Engram 论文精读:用条件记忆模块重塑稀疏大模型
python·自然语言处理·nlp
ldccorpora1 天前
GALE Phase 1 Chinese Broadcast News Parallel Text - Part 1数据集介绍,官网编号LDC2007T23
人工智能·深度学习·算法·机器学习·自然语言处理
renhongxia11 天前
大型语言模型性能预测器:学习何时在混合人机-人工智能管理系统中升级
人工智能·深度学习·学习·机器学习·语言模型·自然语言处理
摸鱼仙人~2 天前
针对大语言模型文本审核逻辑鲁棒性与精细化规则编排的深度研究报告
人工智能·语言模型·自然语言处理
杜子不疼.2 天前
自然语言处理(NLP)实战指南:从传统方法到深度学习
人工智能·深度学习·自然语言处理
GitCode官方2 天前
1.8B 体积、33 种语言互译|腾讯混元 HY-MT1.5-1.8B 多语言机器翻译模型上线
人工智能·自然语言处理·机器翻译
狮子座明仔2 天前
O-Researcher:多智能体蒸馏与强化学习打造开源深度研究新标杆
人工智能·深度学习·语言模型·自然语言处理·开源
路多辛2 天前
为大语言模型而生的节省成本数据格式 TOON 详解
人工智能·语言模型·自然语言处理
ldccorpora2 天前
GALE Phase 1 Distillation Training数据集介绍,官网编号LDC2007T20
人工智能·深度学习·算法·机器学习·自然语言处理·语音识别