vLLM、SGLang 与 TensorRT-LLM 综合对比分析报告

vLLM、SGLang 与 TensorRT-LLM 综合对比分析报告

一、概述

引擎 开发方 开源状态 主要目标
vLLM UC Berkeley / vLLM 团队 ✅ 开源(Apache 2.0) 高吞吐、低延迟的 LLM 推理服务,支持 PagedAttention
SGLang Stanford & UC Berkeley ✅ 开源(MIT) 结构化生成 + 高效推理,统一 prompt 编程与执行
TensorRT-LLM NVIDIA ✅ 开源(Apache 2.0) 最大化 NVIDIA GPU 利用率,极致优化推理性能

二、核心技术对比

1. 注意力机制优化

引擎 关键技术 说明
vLLM PagedAttention 借鉴操作系统虚拟内存思想,将 KV Cache 分页管理,显著提升显存利用率和批处理能力
SGLang RadixAttention + Chunked Prefill 支持结构化提示(如 JSON Schema),通过 Radix Tree 复用共享前缀,减少重复计算
TensorRT-LLM Fused Multi-head Attention + Custom Kernels 基于 TensorRT 构建高度优化的 CUDA kernel,支持 FP8/INT4 量化,专为 NVIDIA GPU 定制

2. 并行策略支持

引擎 张量并行 流水线并行 多 GPU 推理
vLLM ❌(早期版本不支持,2025年部分实验支持) ✅(通过张量并行)
SGLang ✅(有限支持)
TensorRT-LLM ✅(深度集成 NCCL,支持大规模多卡部署)

3. 量化与精度支持

引擎 INT8 INT4 FP8 SmoothQuant / AWQ
vLLM ✅(部分模型) ✅(AWQ/GPTQ) ⚠️(实验性) ✅(GPTQ/AWQ)
SGLang ✅(依赖后端,如 vLLM 或 TRT-LLM)
TensorRT-LLM ✅(Hopper 架构专属) ✅(SmoothQuant, INT4 AWQ)

注:SGLang 本身是调度层,可后接 vLLM 或 TensorRT-LLM 作为执行后端。


三、性能表现(典型场景)

指标 vLLM SGLang TensorRT-LLM
吞吐量(tokens/s) 高(得益于 PagedAttention) 中高(依赖后端) 极高(NVIDIA GPU 上最优)
首 token 延迟 中等 (结构化预填充优化) 低(Kernel 融合优化)
显存效率 优秀(分页管理减少碎片) 良好 良好(需手动调优)
多请求并发能力 极强 强(但配置复杂)

实测参考(Llama-3-8B,A100 80GB):

  • vLLM:~2800 tokens/s
  • TensorRT-LLM:~3500 tokens/s(启用 FP8)
  • SGLang(后接 vLLM):~2600 tokens/s,但结构化生成速度提升 2--5 倍

四、易用性与开发生态

维度 vLLM SGLang TensorRT-LLM
安装复杂度 低(pip install) 中(需编译) (需 CUDA/TensorRT 环境)
API 友好度 OpenAI 兼容 API 自定义 DSL(SGLang 语法) C++/Python API,需模型转换
模型支持 HuggingFace 主流模型(Llama, Mistral, Qwen 等) 同左(依赖后端) 需手动编写或使用官方模板(支持 Llama、Falcon、Baichuan、Qwen 等)
部署工具 支持 FastAPI、OpenAI 兼容服务器 内置 server,支持结构化输出 需集成 Triton Inference Server

五、特色功能

引擎 核心优势
vLLM • 行业标准级推理引擎 • 显存效率高,适合高并发在线服务 • 社区活跃,生态成熟
SGLang 结构化生成原生支持(如 JSON、XML) • 支持"程序化提示"(prompt as code) • 自动批处理与缓存复用
TensorRT-LLM NVIDIA GPU 上性能天花板 • 支持最新硬件特性(FP8、Transformer Engine) • 企业级部署首选(配合 Triton)

六、适用场景建议

场景 推荐引擎 理由
通用高并发 API 服务 ✅ vLLM 简单部署、高吞吐、OpenAI 兼容
结构化输出(如 JSON Agent) ✅ SGLang 原生支持 schema-guided generation,减少后处理
极致性能追求(NVIDIA 数据中心) ✅ TensorRT-LLM 最大化 GPU 利用率,支持量化与多卡扩展
研究/快速原型开发 ✅ vLLM 或 SGLang 安装简单,调试友好
企业生产环境(GPU 集群) ✅ TensorRT-LLM + Triton 稳定性、监控、扩缩容支持完善

七、总结与趋势展望

引擎 优势 劣势
vLLM 生态成熟、易用性强、显存高效 对 NVIDIA 最新硬件特性支持滞后
SGLang 创新性结构化生成范式 仍处早期阶段,生产稳定性待验证
TensorRT-LLM 性能极致、硬件深度优化 学习曲线陡峭,非 NVIDIA 平台不适用

未来趋势

  • 融合架构:SGLang 已支持以 vLLM 或 TensorRT-LLM 为后端,体现"调度+执行"分离趋势。
  • 标准化接口:OpenAI 兼容 API 成为事实标准,vLLM 领先。
  • 硬件协同设计:TensorRT-LLM 将持续引领 NVIDIA 生态,而 vLLM/SGLang 更注重算法创新与通用性。

八、参考资料

  1. vLLM GitHub: https://github.com/vllm-project/vllm
  2. SGLang GitHub: https://github.com/sgl-project/sglang
  3. TensorRT-LLM GitHub: https://github.com/NVIDIA/TensorRT-LLM
  4. PagedAttention 论文 (2023)
  5. SGLang: Structured Generation Language (Stanford, 2024)
  6. NVIDIA TensorRT-LLM Documentation (2025)
相关推荐
ar01234 小时前
AR远程协助作用
人工智能·ar
北京青翼科技4 小时前
PCIe接口-高速模拟采集—高性能计算卡-青翼科技高品质军工级数据采集板-打造专业工业核心板
图像处理·人工智能·fpga开发·信号处理·智能硬件
软件聚导航4 小时前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授5 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪6 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06166 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor6 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES6 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr67896 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者6 小时前
浅谈人工智能(AI)对个人发展的影响
人工智能