基于MATLAB实现的Elman神经网络用于电力负载预测

1. 数据准备
matlab 复制代码
% 假设已经加载了历史电力负载数据和相关影响因子
% 数据文件路径
dataFile = 'path_to_load_data.mat'; % 替换为实际数据文件路径

% 加载数据
data = load(dataFile);
loadData = data.loadData; % 历史电力负载数据
tempData = data.tempData; % 平均温度数据
weatherData = data.weatherData; % 天气类型数据
dateTypeData = data.dateTypeData; % 日期类型数据
2. 数据预处理
matlab 复制代码
% 数据归一化
loadDataNorm = (loadData - min(loadData)) / (max(loadData) - min(loadData));
tempDataNorm = (tempData - min(tempData)) / (max(tempData) - min(tempData));

% 构建训练数据集
% 假设使用前90%的数据作为训练集,后10%作为测试集
trainRatio = 0.9;
trainSize = round(size(loadDataNorm, 1) * trainRatio);
trainData = loadDataNorm(1:trainSize, :);
trainTemp = tempDataNorm(1:trainSize, :);
trainWeather = weatherData(1:trainSize, :);
trainDateType = dateTypeData(1:trainSize, :);

testData = loadDataNorm(trainSize+1:end, :);
testTemp = tempDataNorm(trainSize+1:end, :);
testWeather = weatherData(trainSize+1:end, :);
testDateType = dateTypeData(trainSize+1:end, :);
3. 构建Elman神经网络
matlab 复制代码
% 定义Elman神经网络结构
inputSize = size(trainData, 2); % 输入层大小
hiddenSize = 10; % 隐藏层大小
outputSize = size(trainData, 2); % 输出层大小

% 初始化权重
w1 = randn(hiddenSize, inputSize + hiddenSize); % 输入层到隐藏层的权重
w2 = randn(outputSize, hiddenSize); % 隐藏层到输出层的权重
b1 = randn(hiddenSize, 1); % 隐藏层偏置
b2 = randn(outputSize, 1); % 输出层偏置

% 训练Elman神经网络
numEpochs = 100; % 训练轮数
learningRate = 0.01; % 学习率

for epoch = 1:numEpochs
    for i = 1:size(trainData, 1)
        % 获取当前样本
        x = trainData(i, :);
        temp = trainTemp(i, :);
        weather = trainWeather(i, :);
        dateType = trainDateType(i, :);
        
        % 构建输入向量
        inputVector = [x; temp; weather; dateType];
        
        % 前向传播
        hiddenInput = w1 * inputVector + b1;
        hiddenOutput = 1 ./ (1 + exp(-hiddenInput)); % Sigmoid激活函数
        outputInput = w2 * hiddenOutput + b2;
        output = outputInput; % 线性激活函数
        
        % 计算误差
        error = trainData(i, :) - output;
        
        % 反向传播
        deltaOutput = error;
        deltaHidden = (1 - hiddenOutput) .* hiddenOutput .* (w2' * deltaOutput);
        
        % 更新权重
        w2 = w2 + learningRate * deltaOutput * hiddenOutput';
        b2 = b2 + learningRate * deltaOutput;
        w1 = w1 + learningRate * deltaHidden * inputVector';
        b1 = b1 + learningRate * deltaHidden;
    end
end
4. 负载预测
matlab 复制代码
% 使用训练好的Elman神经网络进行预测
predictions = zeros(size(testData, 1), size(testData, 2));
for i = 1:size(testData, 1)
    % 获取当前样本
    x = testData(i, :);
    temp = testTemp(i, :);
    weather = testWeather(i, :);
    dateType = testDateType(i, :);
    
    % 构建输入向量
    inputVector = [x; temp; weather; dateType];
    
    % 前向传播
    hiddenInput = w1 * inputVector + b1;
    hiddenOutput = 1 ./ (1 + exp(-hiddenInput)); % Sigmoid激活函数
    outputInput = w2 * hiddenOutput + b2;
    output = outputInput; % 线性激活函数
    
    % 保存预测结果
    predictions(i, :) = output;
end
5. 评估预测结果
matlab 复制代码
% 计算预测误差
error = testData - predictions;
mseError = mean(error .^ 2);

% 显示预测结果
disp('预测误差:');
disp(mseError);

% 绘制预测结果与真实数据的对比图
figure;
plot(1:size(testData, 1), testData, 'b', 'DisplayName', '真实负载');
hold on;
plot(1:size(predictions, 1), predictions, 'r--', 'DisplayName', '预测负载');
legend('show');
xlabel('时间');
ylabel('负载');
title('电力负载预测结果');

参考源码 Elman神经网络预测电力负载 www.youwenfan.com/contentcsl/82001.html

  1. 数据准备:加载历史电力负载数据和相关影响因子,如平均温度、天气类型和日期类型。
  2. 数据预处理:对数据进行归一化处理,并将数据分为训练集和测试集。
  3. 构建Elman神经网络:定义Elman神经网络的结构,初始化权重,并使用训练数据进行训练。
  4. 负载预测:使用训练好的Elman神经网络对测试数据进行预测。
  5. 评估预测结果:计算预测误差,并绘制预测结果与真实数据的对比图。
相关推荐
上天夭2 小时前
模型训练篇
人工智能·深度学习·机器学习
Blossom.1182 小时前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
如果你想拥有什么先让自己配得上拥有3 小时前
数学思想和数学思维分别都有什么?
线性代数·算法·机器学习
core5123 小时前
Adaboost (Adaptive Boosting):错题本上的逆袭
机器学习·adaboost·boosting
bu_shuo5 小时前
MATLAB中的转置操作及其必要性
开发语言·算法·matlab
高洁015 小时前
图神经网络初探(2)
人工智能·深度学习·算法·机器学习·transformer
祝余Eleanor6 小时前
Day 51 神经网络调参指南
深度学习·神经网络·机器学习
软件算法开发6 小时前
基于山羚羊优化的LSTM深度学习网络模型(MGO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·一维时间序列预测·山羚羊优化·mgo-lstm
LaughingZhu6 小时前
Product Hunt 每日热榜 | 2025-12-26
人工智能·经验分享·深度学习·神经网络·产品运营
吾在学习路8 小时前
【CVPR 2018最佳论文】Squeeze-and-Excitation Networks
人工智能·深度学习·神经网络·机器学习