(ICLR 2019)APPNP传播用 PageRank,不用神经网络!

论文阅读:

https://arxiv.org/pdf/1810.05997

本篇文章核心贡献可以用一句话来总结把 GNN 的 message passing 解耦,先用 MLP 做预测,再用 Personalized PageRank (PPR) 把预测在图上扩散

这句核心话是什么意思?

传统 GNN = "学习 + 传播" 绑在一起,而APPNP = "学习(MLP)" 和 "传播(PPR)" 分开做。传统 GNN 的邻居传播为: ,特征变换为:,神经网络学习权重为:,这就意味着学习和传播是捆绑在一起的,每加一个 GCN 层,就是再做一次:邻居传播、参数学习、非线性激活;这也就导致了如果想扩大邻域,就只能"加层",但加层会导致oversmoothing、训练难、参数多。

而APPNP 解决了 GCN 的两个大痛点:

  • GCN 层数一深就 oversmoothing(节点表示变得一样)。随着层数深 → 相当于不断做邻居平均(Laplacian smoothing), 层数太深 → 所有节点 embedding 趋于一样, 这称为 oversmoothing。
  • GCN 的可用层数通常只有 2--3 层,因此GCN 只能看到很小的邻域(2-hop)。
  • GCN 想扩大感受野必须加层、参数变多、训练变难。

如何解决问题?

GCN 的传播本质是 random walk,随机游走走太远就会变成全图 stationary distribution(与起点无关)。 为解决这个问题,论文把 random walk 换成Personalized PageRank (PPR):

本质上加了"回跳(teleport)"机制,以 (1−α) 的概率走向邻居,以 α 的概率跳回根节点 i,**PPR 即使传播无限次,仍然保持节点的"个性化中心性",不会失焦,**这正好解决 GCN 的 oversmoothing!

APPNP真正被使用的模型

用 Power Iteration(幂迭代)近似 PPR:

参考:

https://blog.csdn.net/fnoi2014xtx/article/details/107567629

https://blog.csdn.net/gitblog_00008/article/details/139916344

相关推荐
北京耐用通信7 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20097 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟7 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播7 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训7 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹8 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55188 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora8 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大8 小时前
关于前馈神经网络
人工智能·深度学习·神经网络
2的n次方_8 小时前
从0到1打造专属数字人:魔珐星云SDK接入实战演示
人工智能·具身智能·魔珐星云