汽车轻量化材料研究:DIC技术在板料成形极限测试中的实践与优势

新材料在汽车车身及安全件上的应用,是实现汽车轻量化的主要方向。相变诱导的高强度与高成形性的结合,是汽车零部件高性能成形制造的关键。

然而,新型材料在不同加载条件下的硬化曲线存在极大差异 **,**板料在零部件成形过程中往往会经历复杂的应变路径,对现有的力学表征方法和经典本构模型提出了新的挑战与要求。

因此,亟需先进的表征方法进行精确测定与准确描述,以实现对冲压成形过程各种缺陷,如起皱、回弹、颈缩及断裂行为等进行分析。

新拓三维XTDIC三维全场应变测量系统,基于数字图像相关法(DIC),可记录材料全历程的变形历史,提供更丰富的表面应变分布信息,可评估材料的成形性能,并基于DIC方法给出评估材料成形性的合适指标。

在汽车零部件冲压生产过程中,成形极限是冲压过程中一个非常重要的表征参数,它反映了板料在塑性失稳前所能达到的最大变形程度,是各种不同成形工序能否顺利成形的重要依据。

DIC技术用于板材成形极限测试

成形极限在板材成形、冲压工艺中发挥着至关重要的作用,主要有以下几方面:

(1)评定板材局部成形性能;

(2)判断设计的模具结构,冲压工艺是否可行;

(3)解决选材问题及毛坯确定;

(4)对冲压生产进行监控;

(5)判断数值模拟中板料失稳。

板料成形极限FLC分析建立在材料屈服准则和塑性本构关系之上,同时以拉伸失稳准则为颈缩或破裂判断的依据来进行计算。但由于每种准则使用范围有限,使得理论计算与试验结构之间存在一定的偏差。

采用新拓三维XTDIC三维全场应变测量系统,结合Nakazima成形实验,DIC技术可进行材料冲压成形过程的动态监控,分析汽车板料在冲压成型过程中表面整体的瞬时位移场和应变场,并可精准分析局部颈缩的极限状态。

DIC技术用于 板料成形极限测试实验

采用Nakazima实验,凸模冲压带有网格的板料直至出现颈缩或破裂。凸模冲压过程会改变板料的尺寸,XTDIC三维全场应变测量系统可以实时观测板材的应变状态,DIC软件通过计算分析可获得不同应变路径下的极限应变,从而制作出完整的成形极限FLC曲线。

凸模冲压试验机上方单元开放,方便XTDIC三维全场应变测量系统进行图像采集;并在试验机平台上预留接口,保证悬臂梁机构的架设;XTDIC三维全场应变测量系统与悬臂梁配合实现俯拍,保证实验的顺利进行。

01

板材成形极限测试试样准备

测试对象为某种合金材料,厚度为2mm,按照国标要求进行加工,并在样件表面制备散斑。

02

DIC测量系统搭建

将XTDIC三维全场应变测量系统主体安装到悬臂梁上。在球头顶部、试样背面涂抹润滑脂,裁剪一块薄膜粘满润滑脂后放置于球头表面,形成双润滑作用,然后将试样放置于实验平台内。

03

试验加载采集

实验中设置压边力为200KN,冲头速度1mm/s,XTDIC三维全场应变测量系统相机采集速度为20帧/秒。球头与式样接触上后开始采集,直到破坏。

04

实验数据分析

采集数据完毕后,XTDIC三维全场应变测量系统搭配的DIC软件自动生成三维变形云图,包括破裂临界时的形貌和离面位移场、主应变场。DIC软件中选择"截线拾取",可画取垂直于裂缝的截线,并绘制相应曲线,确定板料成型过程的极限。

新拓三维XTDIC三维全场应变测量系统,在材料成形极限领域的应用,它无需预判破裂位置,能一次完成多方向应变量的测量;能够自动提取关键信息,并生成Major strain------Minor strain曲线的数据点;适用于线性应变路径和非线性应变路径的极限成形试验数据测量。

DIC技术可提供精确的实验数据,助力汽车产业优化结构设计和材料选择,从而有效降低产品的重量,同时保持或提高产品的性能和安全性。

相关推荐
神筆&『馬良』15 小时前
Foundation_pose在自己的物体上复现指南:实现任意物体6D位姿检测(利用realsense_D435i和iphone_16pro手机)
目标检测·ubuntu·机器人·视觉检测
毕设源码-郭学长20 小时前
【开题答辩全过程】以 个性化汽车推荐系统为例,包含答辩的问题和答案
汽车
Godspeed Zhao21 小时前
现代智能汽车中的无线技术72——SatCom(0)
汽车
孤狼warrior1 天前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
水中加点糖1 天前
小白都能看懂的——车牌检测与识别(最新版YOLO26快速入门)
人工智能·yolo·目标检测·计算机视觉·ai·车牌识别·lprnet
天天爱吃肉82181 天前
【跨界封神|周杰伦×王传福(陶晶莹主持):音乐创作与新能源NVH测试,底层逻辑竟完全同源!(新人必看入行指南)】
python·嵌入式硬件·算法·汽车
禁默1 天前
从图像预处理到目标检测:Ops-CV 助力 CV 任务在昇腾 NPU 上高效运行
人工智能·目标检测·目标跟踪·cann
前端摸鱼匠1 天前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测
Token_w2 天前
CANN ops-cv解读——AIGC图像生成/目标检测的图像处理算子库
图像处理·目标检测·aigc
BestSongC2 天前
行人摔倒检测系统 - 前端文档(1)
前端·人工智能·目标检测