「日拱一码」155 小提琴图

目录

什么是小提琴图?

数学原理

[核密度估计(Kernel Density Estimation, KDE)](#核密度估计(Kernel Density Estimation, KDE))

带宽选择的影响

小提琴图的优势

代码示例

[1. 基础小提琴图](#1. 基础小提琴图)

[2. 水平小提琴图](#2. 水平小提琴图)

[3. 分组小提琴图](#3. 分组小提琴图)

[4. 小提琴图与箱型图对比](#4. 小提琴图与箱型图对比)


什么是小提琴图?

小提琴图是箱形图与核密度图的结合,它能够同时显示:

  • 数据的分布形状(通过核密度估计)
  • 统计摘要信息(中位数、四分位数等)

数学原理

核密度估计(Kernel Density Estimation, KDE)

小提琴图的形状基于核密度估计,公式为:

其中:

  • K 是核函数(通常使用高斯核)
  • h 是带宽参数,控制平滑程度
  • n 是样本数量
  • xi 是样本点

带宽选择的影响

  • 小带宽:密度曲线波动大,显示细节但可能过拟合
  • 大带宽:曲线平滑,可能掩盖重要特征

小提琴图的优势

  1. 信息丰富:比箱形图展示更多分布信息
  2. 直观可视化:清晰显示数据的密度分布
  3. 多组比较:便于比较不同组别的数据分布

代码示例

1. 基础小提琴图

python 复制代码
## 1. 基础小提琴图
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd

np.random.seed(42)
data1 = np.random.normal(0, 1, 200)
data2 = np.random.normal(5, 1.5, 200)
data3 = np.random.normal(10, 0.8, 200)

# 创建DataFrame
df = pd.DataFrame({
    'Value': np.concatenate([data1, data2, data3]),
    'Category': ['Group A'] * 200 + ['Group B'] * 200 + ['Group C'] * 200
})

# 使用matplotlib绘制小提琴图
plt.figure(figsize=(10, 6))
plt.violinplot([data1, data2, data3], showmeans=True, showmedians=True)
plt.xticks([1, 2, 3], ['Group A', 'Group B', 'Group C'])
plt.title('Basic Violin Plot using Matplotlib')
plt.ylabel('Values')
plt.grid(alpha=0.3)
plt.show()


# 使用Seaborn绘制(更美观)
plt.figure(figsize=(10, 6))
sns.violinplot(data=df, x='Category', y='Value',
               palette='Set2', inner='quartile')
plt.title('Violin Plot using Seaborn')
plt.show()

2. 水平小提琴图

python 复制代码
## 水平小提琴图
plt.figure(figsize=(8, 6))
sns.violinplot(data=df, y='Category', x='Value',
               palette='pastel', inner='box')
plt.title('Horizontal Violin Plot')
plt.show()

3. 分组小提琴图

python 复制代码
## 分组小提琴图
# 创建分组数据
np.random.seed(42)
df_grouped = pd.DataFrame({
    'Value': np.concatenate([
        np.random.normal(0, 1, 100),
        np.random.normal(1, 1, 100),
        np.random.normal(0, 1.5, 100),
        np.random.normal(1, 1.5, 100)
    ]),
    'Category': ['A'] * 200 + ['B'] * 200,
    'Subcategory': ['X'] * 100 + ['Y'] * 100 + ['X'] * 100 + ['Y'] * 100
})

# 分组小提琴图
plt.figure(figsize=(12, 6))
sns.violinplot(data=df_grouped, x='Category', y='Value', hue='Subcategory',
               palette='Set2', split=True, inner='quartile')
plt.title('Grouped Violin Plot')
plt.legend(title='Subcategory')
plt.show()

**4.**小提琴图与箱型图对比

python 复制代码
## 小提琴图与箱型图对比
# 对比小提琴图和箱形图
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))

# 小提琴图
sns.violinplot(data=df, x='Category', y='Value', ax=ax1)
ax1.set_title('Violin Plot')

# 箱形图
sns.boxplot(data=df, x='Category', y='Value', ax=ax2)
ax2.set_title('Box Plot')

plt.tight_layout()
plt.show()
相关推荐
还不秃顶的计科生3 小时前
如何快速用cmd知道某个文件夹下的子文件以及子文件夹的这个目录分支具体的分支结构
人工智能
九河云3 小时前
不同级别华为云代理商的增值服务内容与质量差异分析
大数据·服务器·人工智能·科技·华为云
Elastic 中国社区官方博客3 小时前
Elasticsearch:Microsoft Azure AI Foundry Agent Service 中用于提供可靠信息和编排的上下文引擎
大数据·人工智能·elasticsearch·microsoft·搜索引擎·全文检索·azure
大模型真好玩3 小时前
Gemini3.0深度解析,它在重新定义智能,会是前端工程师噩梦吗?
人工智能·agent·deepseek
机器之心4 小时前
AI终于学会「读懂人心」,带飞DeepSeek R1,OpenAI o3等模型
人工智能·openai
AAA修煤气灶刘哥4 小时前
从Coze、Dify到Y-Agent Studio:我的Agent开发体验大升级
人工智能·低代码·agent
陈佬昔没带相机4 小时前
MiniMax M2 + Trae 编码评测:能否与 Claude 4.5 扳手腕?
前端·人工智能·ai编程
美狐美颜SDK开放平台4 小时前
从0到1开发直播美颜SDK:算法架构、模型部署与跨端适配指南
人工智能·架构·美颜sdk·直播美颜sdk·第三方美颜sdk·美狐美颜sdk
小陈phd4 小时前
RAG从入门到精通(四)——结构化数据读取与导入
人工智能·langchain
玖日大大4 小时前
Trae:字节跳动 AI 原生 IDE 的技术革命与实战指南
ide·人工智能