Jetson版本下Pytorch和torchvision

Download one of the PyTorch binaries from below for your version of JetPack, and see the installation instructions to run on your Jetson. These pip wheels are built for ARM aarch64 architecture, so run these commands on your Jetson (not on a host PC). You can also use the containers from jetson-containers.

PyTorch pip wheels

JetPack 6

PyTorch v2.3.0

PyTorch v2.2.0

PyTorch v2.1.0

JetPack 5

PyTorch v2.1.0

PyTorch v2.0.0

PyTorch v1.14.0

PyTorch v1.13.0

PyTorch v1.12.0

PyTorch v1.11.0

JetPack 4

PyTorch v1.10.0

  • JetPack 4.4 (L4T R32.4.3) / JetPack 4.4.1 (L4T R32.4.4) / JetPack 4.5 (L4T R32.5.0) / JetPack 4.5.1 (L4T R32.5.1) / JetPack 4.6 (L4T R32.6.1)

PyTorch v1.9.0

PyTorch v1.8.0

PyTorch v1.7.0

PyTorch v1.6.0

  • JetPack 4.4 (L4T R32.4.3) / JetPack 4.4.1 (L4T R32.4.4) / JetPack 4.5 (L4T R32.5.0) / JetPack 4.5.1 (L4T R32.5.1) / JetPack 4.6 (L4T R32.6.1)
    • Python 3.6 - torch-1.6.0-cp36-cp36m-linux_aarch64.whl
    • The JetPack 4.4 production release (L4T R32.4.3) only supports PyTorch 1.6.0 or newer, due to updates in cuDNN.
    • This wheel of the PyTorch 1.6.0 final release replaces the previous wheel of PyTorch 1.6.0-rc2.

PyTorch v1.5.0

PyTorch v1.4.0

PyTorch v1.3.0

PyTorch v1.2.0

PyTorch v1.1.0

PyTorch v1.0.0

Instructions

Installation

Below are example commands for installing these PyTorch wheels on Jetson. Substitute the URL and filenames from the desired PyTorch download from above.

> Python 3

复制代码

# substitute the link URL and wheel filename from the desired torch version above wget https://nvidia.box.com/shared/static/p57jwntv436lfrd78inwl7iml6p13fzh.whl -O torch-1.8.0-cp36-cp36m-linux_aarch64.whl sudo apt-get install python3-pip libopenblas-base libopenmpi-dev libomp-dev pip3 install 'Cython<3' pip3 install numpy torch-1.8.0-cp36-cp36m-linux_aarch64.whl

> Python 2.7

复制代码

# substitute the link URL and wheel filename from the desired torch version above wget https://nvidia.box.com/shared/static/1v2cc4ro6zvsbu0p8h6qcuaqco1qcsif.whl -O torch-1.4.0-cp27-cp27mu-linux_aarch64.whl sudo apt-get install libopenblas-base libopenmpi-dev # skip libopenmpi-dev for PyTorch >= 1.12 pip install future torch-1.4.0-cp27-cp27mu-linux_aarch64.whl

(PyTorch v1.4.0 for L4T R32.4.2 is the last version to support Python 2.7)

> torchvision

复制代码

$ sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libopenblas-dev libavcodec-dev libavformat-dev libswscale-dev $ git clone --branch <version> https://github.com/pytorch/vision torchvision # see below for version of torchvision to download $ cd torchvision $ export BUILD_VERSION=0.x.0 # where 0.x.0 is the torchvision version $ python3 setup.py install --user $ cd ../ # attempting to load torchvision from build dir will result in import error $ pip install 'pillow<7' # always needed for Python 2.7, not needed torchvision v0.5.0+ with Python 3.6

Select the version of torchvision to download depending on the version of PyTorch that you have installed:

  • PyTorch v1.0 - torchvision v0.2.2
  • PyTorch v1.1 - torchvision v0.3.0
  • PyTorch v1.2 - torchvision v0.4.0
  • PyTorch v1.3 - torchvision v0.4.2
  • PyTorch v1.4 - torchvision v0.5.0
  • PyTorch v1.5 - torchvision v0.6.0
  • PyTorch v1.6 - torchvision v0.7.0
  • PyTorch v1.7 - torchvision v0.8.1
  • PyTorch v1.8 - torchvision v0.9.0
  • PyTorch v1.9 - torchvision v0.10.0
  • PyTorch v1.10 - torchvision v0.11.1
  • PyTorch v1.11 - torchvision v0.12.0
  • PyTorch v1.12 - torchvision v0.13.0
  • PyTorch v1.13 - torchvision v0.13.0
  • PyTorch v1.14 - torchvision v0.14.1
  • PyTorch v2.0 - torchvision v0.15.1
  • PyTorch v2.1 - torchvision v0.16.1
  • PyTorch v2.2 - torchvision v0.17.1
  • PyTorch v2.3 - torchvision v0.18.0

Verification

To verify that PyTorch has been installed correctly on your system, launch an interactive Python interpreter from terminal (python command for Python 2.7 or python3 for Python 3.6) and run the following commands:

复制代码

>>> import torch >>> print(torch.__version__) >>> print('CUDA available: ' + str(torch.cuda.is_available())) >>> print('cuDNN version: ' + str(torch.backends.cudnn.version())) >>> a = torch.cuda.FloatTensor(2).zero_() >>> print('Tensor a = ' + str(a)) >>> b = torch.randn(2).cuda() >>> print('Tensor b = ' + str(b)) >>> c = a + b >>> print('Tensor c = ' + str(c))

复制代码

>>> import torchvision >>> print(torchvision.__version__) Build from Source

Below are the steps used to build the PyTorch wheels. These were compiled in a couple of hours on a Xavier for Nano, TX2, and Xavier.

Note that if you are trying to build on Nano, you will need to mount a swap file.

Max Performance

复制代码

$ sudo nvpmodel -m 0 # on Xavier NX, use -m 2 instead (15W 6-core mode) $ sudo jetson_clocks

Download PyTorch sources

复制代码

$ git clone --recursive --branch <version> http://github.com/pytorch/pytorch $ cd pytorch

Apply Patch

Select the patch to apply from below based on the version of JetPack you're building on. The patches avoid the "too many CUDA resources requested for launch" error (PyTorch issue #8103, in addition to some version-specific bug fixes.

I

相关推荐
hetao173383711 分钟前
2025-12-31~2026-1-2 hetao1733837 的刷题笔记
c++·笔记·算法
争不过朝夕,又念着往昔21 分钟前
C++AI
开发语言·c++·人工智能
敲上瘾27 分钟前
C++11线程库指南:线程、锁、原子操作与并发编程实战
开发语言·c++·多线程
微露清风39 分钟前
系统性学习C++进阶-第十五讲-map和set的使用
java·c++·学习
fqbqrr1 小时前
2601,C++的模块1
c++
啊董dong1 小时前
noi-2025年12月23号作业
数据结构·c++·算法·noi
青岛少儿编程-王老师1 小时前
CCF编程能力等级认证GESP—C++8级—20251227
java·开发语言·c++
hd51cc1 小时前
MFC打印技术
c++·mfc
爱吃生蚝的于勒2 小时前
【Linux】零基础深入学习动静态库+深入学习地址
linux·运维·服务器·c语言·数据结构·c++·学习
_OP_CHEN2 小时前
【从零开始的Qt开发指南】(十四)Qt 窗口之“三剑客”:工具栏、状态栏、浮动窗口进阶实战指南
开发语言·c++·qt·前端开发·gui开发·qt窗口