Jetson版本下Pytorch和torchvision

Download one of the PyTorch binaries from below for your version of JetPack, and see the installation instructions to run on your Jetson. These pip wheels are built for ARM aarch64 architecture, so run these commands on your Jetson (not on a host PC). You can also use the containers from jetson-containers.

PyTorch pip wheels

JetPack 6

PyTorch v2.3.0

PyTorch v2.2.0

PyTorch v2.1.0

JetPack 5

PyTorch v2.1.0

PyTorch v2.0.0

PyTorch v1.14.0

PyTorch v1.13.0

PyTorch v1.12.0

PyTorch v1.11.0

JetPack 4

PyTorch v1.10.0

  • JetPack 4.4 (L4T R32.4.3) / JetPack 4.4.1 (L4T R32.4.4) / JetPack 4.5 (L4T R32.5.0) / JetPack 4.5.1 (L4T R32.5.1) / JetPack 4.6 (L4T R32.6.1)

PyTorch v1.9.0

PyTorch v1.8.0

PyTorch v1.7.0

PyTorch v1.6.0

  • JetPack 4.4 (L4T R32.4.3) / JetPack 4.4.1 (L4T R32.4.4) / JetPack 4.5 (L4T R32.5.0) / JetPack 4.5.1 (L4T R32.5.1) / JetPack 4.6 (L4T R32.6.1)
    • Python 3.6 - torch-1.6.0-cp36-cp36m-linux_aarch64.whl
    • The JetPack 4.4 production release (L4T R32.4.3) only supports PyTorch 1.6.0 or newer, due to updates in cuDNN.
    • This wheel of the PyTorch 1.6.0 final release replaces the previous wheel of PyTorch 1.6.0-rc2.

PyTorch v1.5.0

PyTorch v1.4.0

PyTorch v1.3.0

PyTorch v1.2.0

PyTorch v1.1.0

PyTorch v1.0.0

Instructions

Installation

Below are example commands for installing these PyTorch wheels on Jetson. Substitute the URL and filenames from the desired PyTorch download from above.

> Python 3

复制代码

# substitute the link URL and wheel filename from the desired torch version above wget https://nvidia.box.com/shared/static/p57jwntv436lfrd78inwl7iml6p13fzh.whl -O torch-1.8.0-cp36-cp36m-linux_aarch64.whl sudo apt-get install python3-pip libopenblas-base libopenmpi-dev libomp-dev pip3 install 'Cython<3' pip3 install numpy torch-1.8.0-cp36-cp36m-linux_aarch64.whl

> Python 2.7

复制代码

# substitute the link URL and wheel filename from the desired torch version above wget https://nvidia.box.com/shared/static/1v2cc4ro6zvsbu0p8h6qcuaqco1qcsif.whl -O torch-1.4.0-cp27-cp27mu-linux_aarch64.whl sudo apt-get install libopenblas-base libopenmpi-dev # skip libopenmpi-dev for PyTorch >= 1.12 pip install future torch-1.4.0-cp27-cp27mu-linux_aarch64.whl

(PyTorch v1.4.0 for L4T R32.4.2 is the last version to support Python 2.7)

> torchvision

复制代码

$ sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libopenblas-dev libavcodec-dev libavformat-dev libswscale-dev $ git clone --branch <version> https://github.com/pytorch/vision torchvision # see below for version of torchvision to download $ cd torchvision $ export BUILD_VERSION=0.x.0 # where 0.x.0 is the torchvision version $ python3 setup.py install --user $ cd ../ # attempting to load torchvision from build dir will result in import error $ pip install 'pillow<7' # always needed for Python 2.7, not needed torchvision v0.5.0+ with Python 3.6

Select the version of torchvision to download depending on the version of PyTorch that you have installed:

  • PyTorch v1.0 - torchvision v0.2.2
  • PyTorch v1.1 - torchvision v0.3.0
  • PyTorch v1.2 - torchvision v0.4.0
  • PyTorch v1.3 - torchvision v0.4.2
  • PyTorch v1.4 - torchvision v0.5.0
  • PyTorch v1.5 - torchvision v0.6.0
  • PyTorch v1.6 - torchvision v0.7.0
  • PyTorch v1.7 - torchvision v0.8.1
  • PyTorch v1.8 - torchvision v0.9.0
  • PyTorch v1.9 - torchvision v0.10.0
  • PyTorch v1.10 - torchvision v0.11.1
  • PyTorch v1.11 - torchvision v0.12.0
  • PyTorch v1.12 - torchvision v0.13.0
  • PyTorch v1.13 - torchvision v0.13.0
  • PyTorch v1.14 - torchvision v0.14.1
  • PyTorch v2.0 - torchvision v0.15.1
  • PyTorch v2.1 - torchvision v0.16.1
  • PyTorch v2.2 - torchvision v0.17.1
  • PyTorch v2.3 - torchvision v0.18.0

Verification

To verify that PyTorch has been installed correctly on your system, launch an interactive Python interpreter from terminal (python command for Python 2.7 or python3 for Python 3.6) and run the following commands:

复制代码

>>> import torch >>> print(torch.__version__) >>> print('CUDA available: ' + str(torch.cuda.is_available())) >>> print('cuDNN version: ' + str(torch.backends.cudnn.version())) >>> a = torch.cuda.FloatTensor(2).zero_() >>> print('Tensor a = ' + str(a)) >>> b = torch.randn(2).cuda() >>> print('Tensor b = ' + str(b)) >>> c = a + b >>> print('Tensor c = ' + str(c))

复制代码

>>> import torchvision >>> print(torchvision.__version__) Build from Source

Below are the steps used to build the PyTorch wheels. These were compiled in a couple of hours on a Xavier for Nano, TX2, and Xavier.

Note that if you are trying to build on Nano, you will need to mount a swap file.

Max Performance

复制代码

$ sudo nvpmodel -m 0 # on Xavier NX, use -m 2 instead (15W 6-core mode) $ sudo jetson_clocks

Download PyTorch sources

复制代码

$ git clone --recursive --branch <version> http://github.com/pytorch/pytorch $ cd pytorch

Apply Patch

Select the patch to apply from below based on the version of JetPack you're building on. The patches avoid the "too many CUDA resources requested for launch" error (PyTorch issue #8103, in addition to some version-specific bug fixes.

I

相关推荐
春夜喜雨18 小时前
关于内存分配的优化与设计
c++·tcmalloc·malloc·jemallc
范纹杉想快点毕业18 小时前
状态机设计与嵌入式系统开发完整指南从面向过程到面向对象,从理论到实践的全面解析
linux·服务器·数据库·c++·算法·mongodb·mfc
坚定学代码18 小时前
认识 ‘using namespace‘
c++
jiang_changsheng19 小时前
环境管理工具全景图与深度对比
java·c语言·开发语言·c++·python·r语言
LYOBOYI12319 小时前
qml的对象树机制
c++·qt
LeoZY_19 小时前
开源项目精选:Dear ImGui —— 轻量高效的 C++ 即时模式 GUI 框架
开发语言·c++·ui·开源·开源软件
特立独行的猫a19 小时前
C++轻量级Web框架介绍与对比:Crow与httplib
开发语言·前端·c++·crow·httplib
YXXY31320 小时前
模拟实现map和set
c++
阿猿收手吧!20 小时前
【C++】引用类型全解析:左值、右值与万能引用
开发语言·c++
「QT(C++)开发工程师」20 小时前
C++ 策略模式
开发语言·c++·策略模式