Pytorch保存pt和pkl

1. 基本概念解释

什么是PyTorch?

PyTorch是一个专门用于深度学习的工具包。你可以把它想象成一个智能厨房,里面有各种专业的厨具和设备,厨师(也就是你)可以用这些工具来创造各种复杂的菜肴(也就是人工智能模型)。

什么是深度学习模型?

深度学习模型就像是一个能够学习的数学大脑。比如说:

  • 一个识别猫的模型:你给它看很多猫的图片,它就能学会识别猫的特征

  • 一个翻译模型:你给它很多英文和中文的对应文本,它就能学会翻译

这个"大脑"由很多层组成,每一层都有很多可以调节的"旋钮"(专业术语叫参数),训练过程就是调整这些旋钮,让大脑变得越来越聪明。

为什么要保存模型?

训练一个好的模型就像培养一个学生:

  • 训练过程:学生需要花很长时间学习知识,做大量练习题

  • 保存模型:把学生学到的知识记在笔记本上,这样下次就不用重新学习了

如果训练了很长时间的模型没有保存,就像学生学完就忘,一切都要从头开始。

2. 文件格式详解

.pt 和 .pth 文件

这两种文件是专门为PyTorch设计的专用格式,就像:

  • 专业的菜谱:专门记录烹饪的步骤和配料比例

  • 医疗处方:专门记录药物的用法和剂量

当你看到.pt或.pth文件时,你马上就知道:"这是一个PyTorch模型文件",就像看到处方就知道这是药品说明一样。

.pkl 文件

.pkl文件是Python的通用保存格式,就像:

  • 普通的笔记本:可以记录任何内容 - 日记、数学公式、购物清单等

  • 万能收纳盒:可以放任何小物件 - 针线、纽扣、回形针等

.pkl文件可以保存几乎任何Python对象,不仅仅是模型。

3. 核心概念解释

状态字典(state_dict)是什么?

想象你的模型是一个学生:

  • 模型结构:学生的大脑结构,决定了他能学习什么类型的知识

  • 状态字典:学生具体学到的知识内容

状态字典包含了模型所有层的权重和偏置,这些就是在训练过程中学到的"知识"。

序列化是什么?

序列化就像打包搬家

  • 序列化(保存):把家里的家具拆开,整齐地装箱,贴上标签

  • 反序列化(加载):根据标签把家具重新组装起来,恢复原样

在计算机中,序列化就是把内存中的对象转换成可以存储或传输的格式。

4. 保存方式详解

只保存状态字典(推荐方式)

这种方式只保存模型学到的"知识",不保存"大脑结构"。

优点

  • 文件体积小,节省存储空间

  • 灵活性高:可以用相同的知识构建不同结构的模型

  • 兼容性好:不容易出现版本不匹配的问题

保存整个模型

这种方式把"大脑结构"和"知识"一起保存。

缺点

  • 文件体积较大

  • 如果PyTorch版本升级,可能无法加载旧版本的模型

  • 不够灵活,必须使用完全相同的模型结构

相关推荐
万行几秒前
机器学习&第一章
人工智能·python·机器学习·flask·计算机组成原理
实战项目1 分钟前
基于PyTorch的卷积神经网络花卉识别系统
人工智能·pytorch·cnn
shangjian0071 分钟前
AI大模型-机器学习-算法-线性回归
人工智能·算法·机器学习
2301_797312263 分钟前
学习java37天
开发语言·python
zuozewei3 分钟前
零基础 | 一文速通 AI 大模型常见术语
人工智能
说私域8 分钟前
云零售时代的S2B模式重构:AI智能名片与链动2+1模式的赋能路径
人工智能·重构·零售
WJSKad123511 分钟前
果园树干识别与定位_faster-rcnn_x101-32x4d_fpn_1x_coco改进实践
python
深蓝电商API11 分钟前
Scrapy中间件实战:自定义请求头和代理池实现
python·scrapy·中间件
hui函数18 分钟前
Python系列Bug修复|如何解决 pip install 安装报错 invalid command ‘bdist_wheel’(缺少 wheel)问题
python·bug·pip
划水的code搬运工小李19 分钟前
EVO评估数据导出在origin中绘制
人工智能