06_Spring AI 干货笔记之递归 Advisor

一、什么是递归 Advisor?

递归 Advisor 是一种特殊类型的 Advisor,能够多次循环执行下游 Advisor 链。这种模式在需要重复调用 LLM 直到满足特定条件时非常有用,例如:

  • 在循环中执行工具调用,直到不再需要调用任何工具

  • 验证结构化输出并在验证失败时重试

  • 通过修改请求来实现评估逻辑

  • 通过修改请求来实现重试逻辑

CallAdvisorChain.copy(CallAdvisor after) 方法是实现递归 Advisor 模式的关键工具。它会创建一个新的 Advisor 链,仅包含原始链中指定 Advisor 之后的所有 Advisor,并允许递归 Advisor 根据需要调用此子链。这种方法确保:

  • 递归 Advisor 可以循环执行链中剩余的 Advisor

  • 链中的其他 Advisor 可以观察并拦截每次迭代

  • Advisor 链保持正确的顺序和可观测性

  • 递归 Advisor 不会重新执行它之前的 Advisor

二、内置递归 Advisor

Spring AI 提供了两个内置的递归 Advisor 来演示此模式:

2.1 ToolCallAdvisor

ToolCallAdvisor 将工具调用循环作为 Advisor 链的一部分实现,而不是依赖模型的内部工具执行。这使得链中的其他 Advisor 能够拦截和观察工具调用过程。

主要特性:

  • 通过设置 setInternalToolExecutionEnabled(false) 禁用模型的内部工具执行

  • 循环执行 Advisor 链,直到不再出现工具调用

  • 支持"直接返回"功能 - 当工具执行设置了 returnDirect=true 时,它会中断工具调用循环,并将工具执行结果直接返回给客户端应用程序,而不是将其发送回 LLM

  • 使用 callAdvisorChain.copy(this) 创建用于递归调用的子链

  • 包含空安全检查,以处理聊天响应可能为 null 的情况

使用示例:

java 复制代码
var toolCallAdvisor = ToolCallAdvisor.builder()
    .toolCallingManager(toolCallingManager)
    .advisorOrder(BaseAdvisor.HIGHEST_PRECEDENCE + 300)
    .build();

var chatClient = ChatClient.builder(chatModel)
    .defaultAdvisors(toolCallAdvisor)
    .build();

直接返回功能

"直接返回"功能允许工具绕过 LLM,将其结果直接返回给客户端应用程序。这在以下情况下非常有用:

  • 工具的输出是最终答案,不需要 LLM 处理

  • 您希望通过避免额外的 LLM 调用来减少延迟

  • 工具结果应按原样返回,无需解释

当工具执行设置了 returnDirect=true 时,ToolCallAdvisor 将:

  • 正常执行工具调用

  • 检测 ToolExecutionResult 中的 returnDirect 标志

  • 跳出工具调用循环

  • 将工具执行结果作为 ChatResponse 直接返回给客户端应用程序,其中工具的输出作为生成内容

2.2 StructuredOutputValidationAdvisor

StructuredOutputValidationAdvisor 根据生成的 JSON 模式验证结构化 JSON 输出,并在验证失败时重试调用,最多重试指定次数。

主要特性:

  • 根据预期的输出类型自动生成 JSON 模式

  • 根据模式验证 LLM 响应

  • 如果验证失败,重试调用,最多可配置重试次数

  • 在重试时向提示词添加验证错误消息,以帮助 LLM 纠正其输出

  • 使用 callAdvisorChain.copy(this) 创建用于递归调用的子链

  • 可选择支持自定义 ObjectMapper 进行 JSON 处理

java 复制代码
var validationAdvisor = StructuredOutputValidationAdvisor.builder()
    .outputType(MyResponseType.class)
    .maxRepeatAttempts(3)
    .advisorOrder(BaseAdvisor.HIGHEST_PRECEDENCE + 1000)
    .build();

var chatClient = ChatClient.builder(chatModel)
    .defaultAdvisors(validationAdvisor)
    .build();
相关推荐
Jerryhut1 小时前
Opencv总结1——视频读取与处理,图像阈值和平滑处理,图像形态学操作
人工智能·opencv·计算机视觉
艾醒(AiXing-w)1 小时前
大模型原理剖析——拆解预训练、微调、奖励建模与强化学习四阶段(以ChatGPT构建流程为例)
人工智能·chatgpt
币圈菜头1 小时前
GAEA Carbon-Silicon Symbiotism NFT 解析:它在系统中扮演的角色,以及与空投权重的关系
人工智能·web3·去中心化·区块链
Deepoch1 小时前
从“飞行相机”到“空中智能体”:无人机如何重构行业生产力
人工智能·科技·机器人·无人机·开发板·具身模型·deepoc
OAK中国_官方1 小时前
OAK HUB:您通往视觉AI的门户!
人工智能·计算机视觉·depthai
鲨莎分不晴1 小时前
独立学习 (IQL):大道至简还是掩耳盗铃
人工智能·深度学习·学习
audyxiao0011 小时前
如何用Gemini“上车”自动驾驶?通过视觉问答完成自动驾驶任务
人工智能·机器学习·自动驾驶·大语言模型·多模态·gemini
free-elcmacom1 小时前
深度学习<2>从“看单帧”到“懂故事”:视频模型的帧链推理,藏着机器读懂时间的秘密
人工智能·python·深度学习·音视频
wxdlfkj1 小时前
从算法溯源到硬件极限:解决微小球面小角度拟合与中心定位的技术路径
人工智能·算法·机器学习
高洁011 小时前
基于Tensorflow库的RNN模型预测实战
人工智能·python·算法·机器学习·django