BiFPN

一、BiFPN

1、加权双向特征金字塔:改进传统的特征金字塔,支持高下哦的多尺度的特征融合,

2、复合缩放方法:同时缩放网络,特征金字塔,检测头分辨率

二、现有问题

1、单阶段检测器:简洁的设计,更高的精度,

2、多尺度表示:自下而上的融合路径,后续也有改进融合结构,但是特征权重处理不好,融合效果不好

3、模型缩放:现有方法都是增大模块去提高精度。

三、BIFPN优化核心

1、跨尺度链接优化

2、移除仅仅一个输入的节点,

3、增加原始输入--到输出节点的额外线路,强化跨尺度的信息流动,

4、重复双向路径,多次融合,提升特征的交互效果

5、加权特征融合:BIFPN为每个输入特征的学习权重,去实现自适应加权融合,提升融合效果

四、EfficientDet 架构

1、整体框架:以单节段检测,以该模块为骨干网络,Bifpn为融合特征网络

2、流程:骨干网络输出p3-p7,BIFPN通过双向路径融合特征,最后有检测头分类回归

3、设计特点:检测头,权重再所有特征层共享,简化结构

五、三种加权特征融合方式

三、符合缩放方法,

1、骨干网络使用缩放系数。

2、BIFPN

3、检测头,宽度与 BIFPN一致,保证特征匹配

三、核心结论

EfficientDet 的EfficientNet 骨干网络与BiFPN 特征融合是实现 "高精度 - 高效率" 的核心,同时其加权融合方式与复合缩放策略进一步强化了资源利用率,是目标检测领域高效架构的典范

相关推荐
jay神13 小时前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
我在北京coding14 小时前
yolo无人机海上目标救援 识别检测无人机海上人的目标检测 水上救援SAR-(完整代码+数据集+模型)
yolo·目标检测·无人机
小Tomkk15 小时前
PyTorch +YOLO + Label Studio + 图像识别 深度学习项目实战 (二)
pytorch·深度学习·yolo
Coding茶水间15 小时前
基于深度学习的输电电力设备检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
2501_9416012117 小时前
Yolov10n多骨干网络多尺度注意力机制__垃圾分类目标检测系统开发与应用
yolo·目标检测·分类
pen-ai20 小时前
【YOLO系列】 YOLOv1 目标检测算法原理详解
算法·yolo·目标检测
FL162386312921 小时前
MMA综合格斗动作检测数据集VOC+YOLO格式1780张16类别
人工智能·yolo·机器学习
极智视界1 天前
无人机场景 - 目标检测数据集 - 停车场停车位检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
前网易架构师-高司机2 天前
带标注信息的手机识别数据集,92.8%识别率,可识别户外公共场所的人是否带手机,支持yolo, coco json,pascal voc xml格式
yolo·手机·数据集·公共·户外·携带
Faker66363aaa2 天前
基于YOLOv8-P2的稻田杂草智能分割与识别系统
yolo