BiFPN

一、BiFPN

1、加权双向特征金字塔:改进传统的特征金字塔,支持高下哦的多尺度的特征融合,

2、复合缩放方法:同时缩放网络,特征金字塔,检测头分辨率

二、现有问题

1、单阶段检测器:简洁的设计,更高的精度,

2、多尺度表示:自下而上的融合路径,后续也有改进融合结构,但是特征权重处理不好,融合效果不好

3、模型缩放:现有方法都是增大模块去提高精度。

三、BIFPN优化核心

1、跨尺度链接优化

2、移除仅仅一个输入的节点,

3、增加原始输入--到输出节点的额外线路,强化跨尺度的信息流动,

4、重复双向路径,多次融合,提升特征的交互效果

5、加权特征融合:BIFPN为每个输入特征的学习权重,去实现自适应加权融合,提升融合效果

四、EfficientDet 架构

1、整体框架:以单节段检测,以该模块为骨干网络,Bifpn为融合特征网络

2、流程:骨干网络输出p3-p7,BIFPN通过双向路径融合特征,最后有检测头分类回归

3、设计特点:检测头,权重再所有特征层共享,简化结构

五、三种加权特征融合方式

三、符合缩放方法,

1、骨干网络使用缩放系数。

2、BIFPN

3、检测头,宽度与 BIFPN一致,保证特征匹配

三、核心结论

EfficientDet 的EfficientNet 骨干网络与BiFPN 特征融合是实现 "高精度 - 高效率" 的核心,同时其加权融合方式与复合缩放策略进一步强化了资源利用率,是目标检测领域高效架构的典范

相关推荐
音沐mu.2 小时前
【46】骰子数据集(有v5/v8模型)/YOLO骰子点数检测
yolo·目标检测·数据集·骰子数据集·骰子点数检测
2501_936146044 小时前
YOLOv8轻量级改进:slimneck-prune技术实现番茄大小分选与成熟度识别
yolo
AI小怪兽4 小时前
轻量、实时、高精度!MIE-YOLO:面向精准农业的多尺度杂草检测新框架 | MDPI AgriEngineering 2026
开发语言·人工智能·深度学习·yolo·无人机
Lun3866buzha7 小时前
【目标检测】厨房场景目标物检测与识别-YOLOv5改进版_HSPAN_DySample实战
yolo·目标检测·目标跟踪
ASF1231415sd17 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
AI小怪兽18 小时前
基于YOLOv13的汽车零件分割系统(Python源码+数据集+Pyside6界面)
开发语言·python·yolo·无人机
ASD125478acx21 小时前
多类型孢子与真菌的智能识别与分类系统YOLO模型优化方法
yolo·目标跟踪·分类
2501_936146041 天前
【计算机视觉系列】:基于YOLOv8-RepHGNetV2的鱿鱼目标检测模型优化与实现
yolo·目标检测·计算机视觉
羊羊小栈1 天前
基于YOLO和多模态大语言模型的智能电梯安全监控预警系统(vue+flask+AI算法)
人工智能·yolo·语言模型·毕业设计·创业创新·大作业
adaAS14143151 天前
【深度学习】YOLOv8-SOEP-RFPN-MFM实现太阳能电池板缺陷检测与分类_1
深度学习·yolo·分类