KANConv

1、该定理是 KAN 的理论基础:任何多元连续函数可分解为一元函数的组合

2、 已有研究(如 SplineCNN)将样条函数用于卷积层,增强网络捕捉非线性特征的能力,尤其适用于几何深度学习(处理非欧数据);

3 架构核心

传统 MLP 在 "节点" 使用固定激活函数,而 KAN 在 "网络边" 使用可学习激活函数(关键创新),实现从 "静态节点函数" 到 "动态边函数" 的转变,模型更灵活。

4

5 定理是 KAN 的理论依据:任何多元连续函数可分解为一元函数的组合;

KAN 基于此定理,将传统 MLP 的 "线性权重矩阵" 替换为 "可学习样条函数",从而减少参数、提升泛化能力。

一、KANConv

1、将线性权重矩阵替换为,可学习样条函数,降低参数表达能力提升,

2、该定理是 KAN 的理论基础:任何多元连续函数可分解为一元函数的组合

3、核心优势:相比其他架构,KAN 卷积层所需参数显著减少,且能通过 B 样条函数 "平滑表示任意激活函数",这是 ReLU 等固定激活函数无法实现的。

4、Kolmogorov-Arnold 网络(Convolutional KANs),这种架构旨在将 Kolmogorov-Arnold 网络(KANs)的非线性 激活函数 整合到卷积层中,从而替代传统卷积神经网络(CNNs)的线性变换

二、数学表达

三、核心

卷积 KAN 的核心创新是用 "可学习样条函数构成的卷积核" 替代 "固定权重卷积核",既保留了 CNN 的空间特征提取能力,又继承了 KAN"参数少

1、些案例体现了 KAN 卷积的核心优势 ------将复杂的多步骤操作压缩到单次卷积中完成

相关推荐
前端摸鱼匠1 小时前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测
2501_941329723 小时前
改进YOLOv8-seg-act__鸡只计数检测实战
yolo
weixin_395448914 小时前
mult_yolov5_post_copy.c_cursor_0205
c语言·python·yolo
王锋(oxwangfeng)10 小时前
YOLOWorld 实现开集障碍物检测
yolo
喵叔哟10 小时前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
2501_941333101 天前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
xsc-xyc1 天前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
张3蜂1 天前
我希望做的是识别身份证正反面,我需要标注多少张图片?
yolo
AAD555888991 天前
YOLOv8-MAN-Faster电容器缺陷检测:七类组件识别与分类系统
yolo·分类·数据挖掘
AI浩1 天前
YOLO-IOD:面向实时增量目标检测
yolo·目标检测·目标跟踪