大模型第一章

1、大模型的回答工作流程

1、输入文本分词化

  • 分词(token)是大模型处理文本的基本单元,通常是词语,词组或者符号

2、token向量化

  • 计算机无法理解文字,因此需要将token转换成数据,此过程即为向量化

3、大模型推理

  • 大模型通过已有的训练来进行推理,它会计算所有可能token的概率,得到候选token的概率集合,大模型通过计算选出一个token作为下一个输出

4、输出token

  • 大模型根据候选token的概率进行随机挑选,,可以通过temperature和top_p这两个参数来调整内容随机性

5、输出文本

  • 将token输出为文字

2、影响大模型内容生成的随机性参数

1、temperature(0 - 2)

temperature是一个调节器,它通过候选token的概率分布,影响大模型的内容生成,通过此参数,可以灵活的控制生成文本的多样性和创造性

  • 明确答案:调低参数(0.8 -> 0.6 -> 0.3)

  • 创意多样:调高参数(0.1 -> 0.7 -> 1.2)

  • 无特殊需求默认即可

**注:**当 temperature=0 时,虽然会最大限度降低随机性,但无法保证每次输出完全一致

2、top_p

控制候选token集合的采样范围,

工作流程:

按概率从高到底排序,选取累计概率达到设定阈值的token组成新的候选集合,从而缩小选择范围

  • 值越大:候选范围越广,内容更多样化,

  • 值越小:候选范围越窄,输出更稳定

  • 极小值(如0.0001):可能有微小的随机性,无法保证每次输出完全一致

为了确保生成内容的可控性,建议不要同时调整top_p和temperature,同时调整可能输出结果不可预测

3、上下文工程

1、上下文窗口:

  • 大模型接收输入(包括指令,问题和背景知识)的地方,被称为上下文窗口,可以理解为计算机的内存

2、上下文工程核心技术:

  • RAG(检索增强生成):从外部知识库中检索信息,为模型提供精准的回答依据

  • prompt(提示词工程):通过精心设计的指令,精确的引导模型的思考方式和输出格式

  • tool(工具试用):赋予模型调用外部工具的能力,以获取实时信息或执行特定任务

  • memory(记忆机制):为模型建立长短期记忆,能够在连续对话中理解历史上下文

4、RAG(检索增强生成)

第一阶段:建立索引

  • 建立索引是为了将私有知识文档或片段转换为可以高效检索的形式,通过将文件内容分割转化为多维向量,并结合向量存储保留文本的语义信息,方便进行相似度计算

第二阶段:检索与生成

  • 检索与生成是根据用户的提问,从索引中检索相关的文档片段,这些片段会与提问一起输入到大模型生成最终的回答。

总结:

基于RAG结构的应用,即避免了将整个参考文档作为背景信息输入而导致的各种问题,又通过检索提取出了与问题最相关的部分,从而提高了大模型输出的准确性。

相关推荐
梵得儿SHI1 小时前
(第一篇)Spring AI 核心技术攻坚:RAG 全流程落地指南|从理论到实战构建本地知识库问答系统
人工智能·spring·大模型落地·增强生成(rag)技术·大模型存在的知识滞后·大模型存在的知识幻觉·提升回答可信度
张彦峰ZYF1 小时前
AI赋能原则3解读思考:可得性时代-AI 正在重写人类能力结构的未来
人工智能·ai·ai赋能与落地
CoovallyAIHub1 小时前
AI 项目如何避免“烂尾”?怎么选择才能让AI项目长期奔跑?
人工智能·算法·计算机视觉
hudawei9961 小时前
词嵌入中语料库矩阵和句子矩阵是怎样的?
人工智能·ai·自然语言处理·词嵌入·word embedding·词向量·语义理解
Mxsoft6191 小时前
某次数据分析偏差,发现时区设置错,修正时间戳救场!
人工智能
努力也学不会java1 小时前
【docker】Docker Register(镜像仓库)
运维·人工智能·机器学习·docker·容器
m0_650108241 小时前
OLMo 2:全开放语言模型的技术突破与实践
论文阅读·人工智能·olmo 2·全开源多模态大模型·全链路开放·训练稳定性
Mintopia1 小时前
🧠 AIGC技术标准制定:Web行业协同的必要性与难点
人工智能·前端框架·trae
轻竹办公PPT1 小时前
AI一键生成年终总结PPT
人工智能·python·powerpoint