【花朵识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法

一、介绍

花朵识别系统,基于TensorFlow搭建Resnet50卷积神经网络算法,通过对5种常见的花朵图片数据集('雏菊', '蒲公英', '玫瑰', '向日葵', '郁金香')进行训练,最后得到一个识别精度较高的模型,然后搭建Web可视化操作平台。

技术栈

  • 项目前端使用Html、CSS、BootStrap搭建界面。
  • 后端基于Django处理逻辑请求
  • 基于Ajax实现前后端数据通信

选题背景与意义: 在人工智能技术蓬勃发展的当下,图像识别领域成果丰硕,花朵识别作为其中细分方向,具有广泛的应用场景,如植物研究、花卉市场管理等。然而,传统花朵识别方法依赖人工经验,效率与准确性欠佳。为此,我们开展花朵识别系统项目,基于TensorFlow搭建Resnet50卷积神经网络算法,利用5种常见花朵图片数据集训练,以获取高精度识别模型。同时,为方便用户操作,采用Html、CSS等搭建前端界面,Django处理后端逻辑,Ajax实现数据通信,搭建Web可视化平台。

二、系统效果图片展示

三、演示视频 and 完整代码 and 安装

地址:ziwupy.cn/p/6D4JhD

四、卷积神经网络算法介绍

ResNet50 是深度残差网络(Residual Network)的一种,由微软研究院提出。它通过引入残差块(Residual Block)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得网络可以训练得更深。残差块通过跳跃连接(skip connection)将输入直接传递到输出层,让网络学习残差映射而非完整映射,降低了训练难度。ResNet50 包含 50 层深度网络,具有强大的特征提取能力,在图像分类、目标检测等任务中表现优异。

python 复制代码
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from tensorflow.keras.preprocessing import image
import numpy as np

# 加载预训练的 ResNet50 模型(不包含顶层分类层)
model = ResNet50(weights='imagenet', include_top=False, pooling='avg')

# 加载并预处理图像
img_path = 'your_image.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

# 提取特征
features = model.predict(x)
print("提取的特征向量维度:", features.shape)

上述代码先加载预训练的 ResNet50 模型(基于 ImageNet 数据集训练),然后加载并预处理图像,最后使用模型提取图像特征。实际应用中,可在此基础上添加自定义分类层进行图像识别任务。

相关推荐
2401_8414956414 小时前
【自然语言处理】自然语言理解的 “问题识别之术”
人工智能·自然语言处理·情感分类·决策·自动问答·自然语言理解·多源信息
Coder_Boy_14 小时前
【人工智能应用技术】-基础实战-小程序应用(基于springAI+百度语音技术)智能语音开关
人工智能·百度·小程序
Coder_Boy_14 小时前
【人工智能应用技术】-基础实战-小程序应用(基于springAI+百度语音技术)智能语音控制-Java部分核心逻辑
java·开发语言·人工智能·单片机
zhengfei61114 小时前
全网第一款用于渗透测试和保护大型语言模型系统——DeepTeam
人工智能
爱笑的眼睛1114 小时前
Flask上下文API:从并发陷阱到架构原理解析
java·人工智能·python·ai
科创致远14 小时前
esop系统可量化 ROI 投资回报率客户案例故事-案例1:宁波某精密制造企业
大数据·人工智能·制造·精益工程
阿杰学AI14 小时前
AI核心知识60——大语言模型之NLP(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·nlp·aigc·agi
丹宇码农14 小时前
使用AI一步生成音视频文件的会议纪要或者课后笔记
人工智能·笔记·音视频
自不量力的A同学14 小时前
xAI 发布 Grok Voice Agent API
人工智能·语音识别